【cs229-Lecture5】生成学习算法:1)高斯判别分析(GDA);2)朴素贝叶斯(NB)

参考:

cs229讲义

机器学习(一):生成学习算法Generative Learning algorithmshttp://www.cnblogs.com/zjgtan/archive/2013/06/08/3127490.html



首先,简单比较一下前几节课讲的判别学习算法(Discriminative Learning Algorithm)和本节课讲的生成学习算法(Generative Learning Algorithm)的区别。

eg:问题:Consider a classi?cation problem in which we want to learn to distinguishbetween elephants (y  =  1) and dogs (y  =  0), based on some features of
an animal.

判别学习算法:(DLA通过建立输入空间X与输出标注{1, 0}间的映射关系学习得到p(y|x))

Given a training set,  an algorithm like logistic regression or the perceptron algorithm (basically) tries to ?nd a straight linethat is, a decision boundary—that separates the elephants and dogs. Then, to classify a new animal as either an elephant or a dog, it checks on which side of the decision boundary it falls, and makes its prediction accordingly.

生成学习算法:(GLA首先确定p(x|y)和p(y),由贝叶斯准则得到后验分布,通过最大后验准则进行预测,)

First, looking at elephants, we can build a model of what elephants look like.  Then, looking at dogs, we can build a separate model of what dogs look like. Finally, to classify a new animal, we can match the new animal against the elephant model, and match it against the dog model, to see whether the new animal looks more like the elephants or more like the dogs we had seen in the training set.

(ps:先验概率 vs 后验概率

事情还没有发生,要求这件事情发生的可能性的大小,是

先验概率

.
事情已经发生,要求这件事情发生的原因是由某个因素引起的可能性的大小,是

后验概率

.

)



生成学习算法

首先,温习一下高斯分布的相关知识:

高斯分布      Gaussian distribution

高斯分布也就是正态分布; 数学期望为, 方差的高斯分布通常记为.

标准正态分布      Standard normal distribution

标准正态分布是指数学期望, 方差为正态分布, 记为. 对于数学期望为, 方差为的正态分布随机变量, 通过下列线性变换可以得到服从标准正态分布的随机变量.

二元正态分布    Bivariate normal distribution

二元正态分布[1]是指两个服从正态分布的随机变量具有的联合概率分布. 二元正态分布的联合概率密度函数为

其中

, , , , 为概率分布的参数. 上述二元正态分布记为.

二元正态分布特征函数

多元正态分布    Multivariate normal distribution

多元正态分布是指多个服从正态分布的随机变量组成的随机向量具有的联合概率分布. 数学期望协方差矩阵随机变量的多元正态分布联合概率密度函数

服从多元正态分布可以记为.

如果, 并且, 那么.

可以看到,多元正态分布与两个量相关:均值和协方差矩阵。因此,接下来,通过图像观察一下改变这两个量的值,所引起的变化。

    1.   1、高斯判别分析(GDA,Gaussian Discriminant Analysis):

a、提出假设遵循正态分布:

In this model, we’ll assume that p(x|y) is distributed according to a multivariate normal distribution(多元正态分布).

b、分别对征服样本进行拟合,得出相应的模型

最后,比较一下GDA和Logistic回归

GDA——如果确实符合实际数据,则只需要少量的样本就可以得到较好的模型

Logistic Regression——Logistic回归模型有更好的鲁棒性

总结:

GDA makes stronger modeling assumptions, and is more data e?cient (i.e., requires less training data to learn “well”) when the modeling assumptions are correct or at least approximately correct.

Logistic regression makes weaker assumptions,  and is signi?cantly more robust to deviations from modeling assumptions.

Speci?cally,  when the data is indeed non-Gaussian, then in the limit of large datasets, logistic regression will almost always do better than GDA. For this reason, in practice logistic regression is used more often than GDA. (Some related considerations about discriminative vs.  generative models also apply for the Naive Bayes algorithm that we discuss next, but the Naive Bayes algorithm is still considered a very good, and is certainly also a very popular, classi?cation algorithm.)

2、朴素贝叶斯(NB,Naive Bayes):

以文本分类为例,基于条件独立的假设。在实际语法上,有些单词之间是存在一定联系的,尽管如此,朴素贝叶斯还是表现出了非常好的性能。

因为独立,所以

得到联合似然函数Joint Likelihood:

得到这些参数的估计值之后,给你一封新的邮件,可以根据贝叶斯公式,计算



Laplace smoothing(Laplace 平滑)

当邮件中遇到新词,(0/0)本质是输入样本特征空间维数的提升,旧的模型无法提供有效分类信息。

遇到这种情况时,可以进行平滑处理:(+1)

==============>

时间: 2024-09-29 09:06:57

【cs229-Lecture5】生成学习算法:1)高斯判别分析(GDA);2)朴素贝叶斯(NB)的相关文章

斯坦福CS229机器学习课程笔记四:GDA、朴素贝叶斯、多项事件模型

生成学习与判别学习 像逻辑回归,用hθ(x) = g(θTx) 直接地来建模 p(y|x; θ) :或者像感知机,直接从输入空间映射到输出空间(0或1),它们都被称作判别学习(discriminative learning).与之相对的是生成学习(generative learning),先对 p(x|y) 与 p(y) 建模,然后通过贝叶斯法则导出后验条件概率分布分母的计算规则为全概率公式:p(x) = p(x|y = 1)p(y = 1) + p(x|y =0)p(y = 0).这一节介绍的

Stanford大学机器学习公开课(五):生成学习算法、高斯判别、朴素贝叶斯

(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例,只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以称为判别学习方法. 而生成学习算法则是对两个类别分别进行建模,用新的样例去匹配两个模板,匹配度较高的作为新样例的类别,比如分辨大象(y=1)和狗(y=0),首先,观察大象,然后建立一个大

Stanford机器学习[第六讲]-朴素贝叶斯算法

引文:由于之前讲过了朴素贝叶斯的理论Stanford机器学习[第五讲]-生成学习算法第四部分,同时朴素贝叶斯的算法实现也讲过了,见机器学习算法-朴素贝叶斯Python实现.那么这节课打算讲解一下朴素贝叶斯算法的具体计算流程,通过一个具体的实例来讲解. PS:为了专注于某一个细节,本章节只抽取了视频的一部分来讲解,只讲解一个贝叶斯算法的计算流程,关于视频里面的具体内容请参考下面的视频链接. 讲解的实例是一个文本分类的例子,区分一句话是粗鲁的还是文明的,类别标签只有Yes或No,表示是粗鲁的和不是粗

(笔记)斯坦福机器学习第五讲--生成学习算法

 本讲内容 1. Generative learning algorithms(生成学习算法) 2. GDA(高斯判别分析) 3. Naive Bayes(朴素贝叶斯) 4. Laplace Smoothing(拉普拉斯平滑) 1.生成学习算法与判别学习算法 判别学习算法:直接学习  或者学习一个假设  直接输出0或者1.logistic回归是判别学习算法的一个例子. 生成学习算法:对  建模,即在给定所属的类别的情况下,对特征出现的概率建模.出于技术上的考虑,也会对  建模.   根据贝叶斯公

生成学习算法

生成学习算法引入 目前为止,我们主要讲解了条件概率模型p(y|x,θ)的学习算法.接下来,我们将讨论其他的学习算法.接下来举个例子,比如现在遇到一个分类问题,基于一些特征来判断一个动物是大象 (y = 1) 还是小狗 (y = 0).基于给定的数据集,我们可以采用logistic回归或者感知器学习的方法来寻找一条直线(称之为决策边界)把大象和小狗分割开割开来.之后预测新的动物时,只要判断它在决策边界的哪一边就可以预测其所属分类. 现在有另外一种方法.首先是查看大象的数据,然后建立一个什么是大象的

高斯判别分析、朴素贝叶斯和逻辑回归

近来看论文中经常看到GDA和朴素贝叶斯,并且论文中说的算法中用到的贝叶斯公式,对怎么用的原理比较困惑,今天主要看了斯坦福机器学习的关于GDA,NB和LR的讲义部分.理解了贝叶斯公式在GDA和NB中的原理,以及GDA和LR的关系. 与以前学习贝叶斯公式相比贝叶斯公式:对于目标B有不同的到达方式Ai,i=1,2,3,...,n.已知p(Ai)和p(B|Ai)的话,如果知道B发生了,可以知道Ai的后验概率. 贝叶斯公式图示 在GDA和NB中,类别标签就相当于Ai,每一个特征相当于B的一个分量.根据采集

实现 | 朴素贝叶斯模型算法研究与实例分析

实现 | 朴素贝叶斯模型算法研究与实例分析(白宁超2018年9月4日09:03:21) 导读:朴素贝叶斯模型是机器学习常用的模型算法之一,其在文本分类方面简单易行,且取得不错的分类效果.所以很受欢迎,对于朴素贝叶斯的学习,本文首先介绍理论知识即朴素贝叶斯相关概念和公式推导,为了加深理解,采用一个维基百科上面性别分类例子进行形式化描述.然后通过编程实现朴素贝叶斯分类算法,并在屏蔽社区言论.垃圾邮件.个人广告中获取区域倾向等几个方面进行应用,包括创建数据集.数据预处理.词集模型和词袋模型.朴素贝叶斯

生成学习算法(Generative Learning algorithms)

一:引言 在前面我们谈论到的算法都是在给定x的情况下直接对p(y|x;Θ)进行建模.例如,逻辑回归利用hθ(x) = g(θTx)对p(y|x;Θ)建模. 现在考虑这样一个分类问题,我们想根据一些特征来区别动物是大象(y=1)还是狗(y=0).给定了这样一个训练集,逻辑回归或感知机算法要做的就是去找到一个决策边界,将大象和狗的样本分开来.但是如果换个思路,首先根据大象的特征来学习出一个大象的模型,然后根据狗的特征学习出狗的模型,最后对于一个新的样本,提取它的特征先放到大象的模型中求得是大象的概率

Stanford机器学习[第五讲]-生成学习算法

本课内容: 生成学习算法的介绍: 第一个典型的生成学习算法--高斯判别分析: 生成学习算法与之前的判别学习算法的对比: 朴素贝叶斯算法, Laplace平滑. 1.生成学习算法 学习算法分为两种:一种是判别学习算法(Discriminative Learning Algorithm),简称DLA,另一种是生成学习算法(Generative Learning Algorithm),简称GLA. DLA通过建立输入空间X与输出标注{1, 0}间的映射关系学习得到p(y|x).而GLA首先确定p(x|