HDU 4549

水题: 费马小定理+快速幂+矩阵快速幂

(第一次用到费马小定理)

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MOD  = 1000000006;
const LL MOD1 = 1000000007;
struct Matrix
{
    LL NUM[2][2];
    Matrix operator + (const Matrix a) const
    {
        Matrix c;
        for(int i = 0; i < 2; ++i)
        {
            for(int j = 0; j < 2; ++j)
            {
                c.NUM[i][j] = NUM[i][j] + a.NUM[i][j];
            }
        }
        return c;
    }
    Matrix operator * (const Matrix a) const
    {
        Matrix c;
        for(int i = 0; i < 2; ++i)
        {
            for(int j = 0; j < 2; ++j)
            {
                c.NUM[i][j] = 0;
                for(int k = 0; k < 2; ++k)
                    c.NUM[i][j] = (c.NUM[i][j] + NUM[i][k] * a.NUM[k][j] % MOD) % MOD;
            }
        }
        return c;
    }
};

Matrix ppow(Matrix a, LL n)
{
    Matrix ret;
    for(int i =0 ; i< 2; ++i)
    {
        for(int j = 0; j < 2; ++j)
            ret.NUM[i][j] = i==j ? 1 : 0;
    }
    while(n)
    {
        if(n & 1) ret = ret * a;
        a = a * a;
        n >>= 1;
    }
    return ret;
}

LL Pow(LL a, LL n)
{
    LL ret = 1;
    while(n)
    {
        if(n & 1) ret =ret * a % MOD1;
        a = a * a % MOD1;
        n >>= 1;
    }
    return ret;
}

int main()
{
    LL a, b, n;
    Matrix E;
    E.NUM[0][0] = 1; E.NUM[0][1] = 1;
    E.NUM[1][0] = 1; E.NUM[1][1] = 0;
    while(cin >> a >> b >> n)
    {
        if(n == 0) cout << a << endl;
        else if(n == 1) cout << b << endl;
        else
        {
            n -= 1;
            Matrix tmp = ppow(E,n);
            LL na = tmp.NUM[0][1] , nb = tmp.NUM[0][0];
            LL ans = (Pow(a,na) * Pow(b,nb))%MOD1;
            cout << ans << endl;
        }
    }
    return 0;
}
时间: 2024-10-21 18:57:33

HDU 4549的相关文章

hdu 4549 M斐波那契数列(矩阵快速幂,快速幂降幂)

http://acm.hdu.edu.cn/showproblem.php?pid=4549 f[0] = a^1*b^0%p,f[1] = a^0*b^1%p,f[2] = a^1*b^1%p.....f[n] = a^fib[n-1] * b^fib[n-2]%p. 这里p是质数,且a,p互素,那么我们求a^b%p,当b很大时要对b降幂. 因为a,p互素,那么由费马小定理知a^(p-1)%p = 1.令b = k*(p-1) + b',a^b%p = a^(k*(p-1)+b')%p = a

HDU 4549 M斐波那契数列 ( 矩阵快速幂 + 费马小定理 )

HDU 4549 M斐波那契数列 (  矩阵快速幂 + 费马小定理  ) 题意:中文题,不解释 分析:最好的分析就是先推一推前几项,看看有什么规律 #include <cstdio> #include <cstring> #include <algorithm> using namespace std; typedef __int64 LL; #define CLR( a, b ) memset( a, b, sizeof(a) ) #define MOD 100000

hdu 4549 M斐波那契数列(快速幂 矩阵快速幂 费马小定理)

题目链接http://acm.hdu.edu.cn/showproblem.php?pid=4549: 题目是中文的很容易理解吧.可一开始我把题目看错了,这毛病哈哈. 一开始我看错题时,就用了一个快速幂来解,不用说肯定wa,看题目的通过率也不高,我想会不会有啥坑啊.然而我就是那大坑,哈哈. 不说了,直接说题吧,先讨论k=1,2,3;时的解.这应该会解吧,不多说了: 从第四项开始f(4)=a^1+b^2;f(5)=a^2+b^3;f(6)=a^3+b^5......; 看出来了吧,a上的指数成斐波

hdu 4549 M斐波那契数列(矩阵高速幂,高速幂降幂)

http://acm.hdu.edu.cn/showproblem.php?pid=4549 f[0] = a^1*b^0%p,f[1] = a^0*b^1%p,f[2] = a^1*b^1%p.....f[n] = a^fib[n-1] * b^fib[n-2]%p. 这里p是质数,且a,p互素,那么我们求a^b%p,当b非常大时要对b降幂. 由于a,p互素,那么由费马小定理知a^(p-1)%p = 1.令b = k*(p-1) + b'.a^b%p = a^(k*(p-1)+b')%p =

【矩阵快速幂】HDU 4549 : M斐波那契数列(矩阵嵌套)

[题目链接]click here~~ [题目大意] M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的值吗?对每组测试数据请输出一个整数F[n],由于F[n]可能很大,你只需输出F[n]对1000000007取模后的值即可,每组数据输出一行. [Source] :2013金山西山居创意游戏程序挑战赛――初赛(2) [解题思路] 这个题稍微有点难度,就

HDU 4549 M斐波那契数列(矩阵快速幂)

Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的值吗? Input 输入包含多组测试数据: 每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 ) Output 对每组测试数据请输出一个整数F[n],由于F[n]可能很大,你只需输出F[n]对1000000007取模

hdu 4549 (矩阵快速幂+费马小定理)

题意:已知F0=a,F1=b,Fn=Fn-1*Fn-2,给你a,b,n求Fn%1000000007的值 思路:我们试着写几组数 F0=a F1=b F2=a*b F3=a*b2 F4=a2*b3 F5=a3*b5 我们发现a,b的系数其实是斐波那契数列,我们只需用矩阵快速幂求出相应系数就行,但是 这个系数随着增长会特别大,这时我们需要利用费马小定理进行降幂处理 费马小定理 ap-1≡1(mod p) 代码: #include <iostream> #include <cmath>

HDU 4549 M斐波那契数列(矩阵快速幂&amp;费马小定理)

ps:今天和战友聊到矩阵快速幂,想到前几天学长推荐去刷矩阵专题,挑了其中唯一一道中文题,没想到越过山却被河挡住去路... 题目链接:[kuangbin带你飞]专题十九 矩阵 R - M斐波那契数列 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u 题意 Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = a F[1] = b F[n] = F[n-1] * F[n-2]

hdu 4549 M斐波那契数列 矩阵快速幂+欧拉定理

M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的值吗? Input 输入包含多组测试数据:每组数据占一行,包含3个整数a, b,