阿里巴巴开源项目: canal 基于mysql数据库binlog的增量订阅&消费

背景

早期,阿里巴巴B2B公司因为存在杭州和美国双机房部署,存在跨机房同步的业务需求。不过早期的数据库同步业务,主要是基于trigger的方式获取增 量变更,不过从2010年开始,阿里系公司开始逐步的尝试基于数据库的日志解析,获取增量变更进行同步,由此衍生出了增量订阅&消费的业务,从此 开启了一段新纪元。ps. 目前内部使用的同步,已经支持mysql5.x和oracle部分版本的日志解析

基于日志增量订阅&消费支持的业务:

  1. 数据库镜像
  2. 数据库实时备份
  3. 多级索引 (卖家和买家各自分库索引)
  4. search build
  5. 业务cache刷新
  6. 价格变化等重要业务消息

项目介绍

名称:canal [k?‘næl]

译意: 水道/管道/沟渠

语言: 纯java开发

定位: 基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了mysql

工作原理

mysql主备复制实现


 从上层来看,复制分成三步:

  1. master将改变记录到二进制日志(binary log)中(这些记录叫做二进制日志事件,binary log events,可以通过show binlog events进行查看);
  2. slave将master的binary log events拷贝到它的中继日志(relay log);
  3. slave重做中继日志中的事件,将改变反映它自己的数据。

canal的工作原理:

原理相对比较简单:

  1. canal模拟mysql slave的交互协议,伪装自己为mysql slave,向mysql master发送dump协议
  2. mysql master收到dump请求,开始推送binary log给slave(也就是canal)
  3. canal解析binary log对象(原始为byte流)

架构

说明:

  • server代表一个canal运行实例,对应于一个jvm
  • instance对应于一个数据队列  (1个server对应1..n个instance)

instance模块:

  • eventParser (数据源接入,模拟slave协议和master进行交互,协议解析)
  • eventSink (Parser和Store链接器,进行数据过滤,加工,分发的工作)
  • eventStore (数据存储)
  • metaManager (增量订阅&消费信息管理器)

知识科普

mysql的Binlay Log介绍

简单点说:

  • mysql的binlog是多文件存储,定位一个LogEvent需要通过binlog filename +  binlog position,进行定位
  • mysql的binlog数据格式,按照生成的方式,主要分为:statement-based、row-based、mixed。

    Java代码  

    1. mysql> show variables like ‘binlog_format‘;
    2. +---------------+-------+
    3. | Variable_name | Value |
    4. +---------------+-------+
    5. | binlog_format | ROW   |
    6. +---------------+-------+
    7. 1 row in set (0.00 sec)

目前canal只能支持row模式的增量订阅(statement只有sql,没有数据,所以无法获取原始的变更日志)

EventParser设计

大致过程:

整个parser过程大致可分为几步:

  1. Connection获取上一次解析成功的位置  (如果第一次启动,则获取初始指定的位置或者是当前数据库的binlog位点)
  2. Connection建立链接,发送BINLOG_DUMP指令
     // 0. write command number
     // 1. write 4 bytes bin-log position to start at
     // 2. write 2 bytes bin-log flags
     // 3. write 4 bytes server id of the slave
     // 4. write bin-log file name
  3. Mysql开始推送Binaly Log
  4. 接收到的Binaly Log的通过Binlog parser进行协议解析,补充一些特定信息
    // 补充字段名字,字段类型,主键信息,unsigned类型处理
  5. 传递给EventSink模块进行数据存储,是一个阻塞操作,直到存储成功
  6. 存储成功后,定时记录Binaly Log位置

mysql的Binlay Log网络协议:

说明:

EventSink设计

说明:

  • 数据过滤:支持通配符的过滤模式,表名,字段内容等
  • 数据路由/分发:解决1:n (1个parser对应多个store的模式)
  • 数据归并:解决n:1 (多个parser对应1个store)
  • 数据加工:在进入store之前进行额外的处理,比如join

数据1:n业务

为了合理的利用数据库资源, 一般常见的业务都是按照schema进行隔离,然后在mysql上层或者dao这一层面上,进行一个数据源路由,屏蔽数据库物理位置对开发的影响,阿里系主要是通过cobar/tddl来解决数据源路由问题。

所以,一般一个数据库实例上,会部署多个schema,每个schema会有由1个或者多个业务方关注

数据n:1业务

同样,当一个业务的数据规模达到一定的量级后,必然会涉及到水平拆分和垂直拆分的问题,针对这些拆分的数据需要处理时,就需要链接多个store进行处理,消费的位点就会变成多份,而且数据消费的进度无法得到尽可能有序的保证。

所以,在一定业务场景下,需要将拆分后的增量数据进行归并处理,比如按照时间戳/全局id进行排序归并.

EventStore设计

  • 1.  目前仅实现了Memory内存模式,后续计划增加本地file存储,mixed混合模式
  • 2.  借鉴了Disruptor的RingBuffer的实现思路

RingBuffer设计:

定义了3个cursor

  • Put :  Sink模块进行数据存储的最后一次写入位置
  • Get :  数据订阅获取的最后一次提取位置
  • Ack :  数据消费成功的最后一次消费位置

借鉴Disruptor的RingBuffer的实现,将RingBuffer拉直来看:

实现说明:

  • Put/Get/Ack cursor用于递增,采用long型存储
  • buffer的get操作,通过取余或者与操作。(与操作: cusor & (size - 1) , size需要为2的指数,效率比较高)

Instance设计

instance代表了一个实际运行的数据队列,包括了EventPaser,EventSink,EventStore等组件。

抽象了CanalInstanceGenerator,主要是考虑配置的管理方式:

  • manager方式: 和你自己的内部web console/manager系统进行对接。(目前主要是公司内部使用)
  • spring方式:基于spring xml + properties进行定义,构建spring配置.

Server设计

server代表了一个canal的运行实例,为了方便组件化使用,特意抽象了Embeded(嵌入式) / Netty(网络访问)的两种实现

  • Embeded :  对latency和可用性都有比较高的要求,自己又能hold住分布式的相关技术(比如failover)
  • Netty :  基于netty封装了一层网络协议,由canal
    server保证其可用性,采用的pull模型,当然latency会稍微打点折扣,不过这个也视情况而定。(阿里系的notify和metaq,典型的
    push/pull模型,目前也逐步的在向pull模型靠拢,push在数据量大的时候会有一些问题)

增量订阅/消费设计

具体的协议格式,可参见:CanalProtocol.proto

get/ack/rollback协议介绍:

  • Message getWithoutAck(int batchSize),允许指定batchSize,一次可以获取多条,每次返回的对象为Message,包含的内容为:
    a. batch id 唯一标识
    b. entries 具体的数据对象,对应的数据对象格式:EntryProtocol.proto
  • void rollback(long batchId),顾命思议,回滚上次的get请求,重新获取数据。基于get获取的batchId进行提交,避免误操作
  • void ack(long batchId),顾命思议,确认已经消费成功,通知server删除数据。基于get获取的batchId进行提交,避免误操作

canal的get/ack/rollback协议和常规的jms协议有所不同,允许get/ack异步处理,比如可以连续调用get多次,后续异步按顺序提交ack/rollback,项目中称之为流式api.

流式api设计的好处:

  • get/ack异步化,减少因ack带来的网络延迟和操作成本 (99%的状态都是处于正常状态,异常的rollback属于个别情况,没必要为个别的case牺牲整个性能)
  • get获取数据后,业务消费存在瓶颈或者需要多进程/多线程消费时,可以不停的轮询get数据,不停的往后发送任务,提高并行化.  (作者在实际业务中的一个case:业务数据消费需要跨中美网络,所以一次操作基本在200ms以上,为了减少延迟,所以需要实施并行化)

流式api设计:

  • 每次get操作都会在meta中产生一个mark,mark标记会递增,保证运行过程中mark的唯一性
  • 每次的get操作,都会在上一次的mark操作记录的cursor继续往后取,如果mark不存在,则在last ack cursor继续往后取
  • 进行ack时,需要按照mark的顺序进行数序ack,不能跳跃ack. ack会删除当前的mark标记,并将对应的mark位置更新为last ack cusor
  • 一旦出现异常情况,客户端可发起rollback情况,重新置位:删除所有的mark, 清理get请求位置,下次请求会从last ack cursor继续往后取

数据对象格式:EntryProtocol.proto

Java代码  

  1. Entry
  2. Header
  3. logfileName [binlog文件名]
  4. logfileOffset [binlog position]
  5. executeTime [发生的变更]
  6. schemaName
  7. tableName
  8. eventType [insert/update/delete类型]
  9. entryType   [事务头BEGIN/事务尾END/数据ROWDATA]
  10. storeValue  [byte数据,可展开,对应的类型为RowChange]
  11. RowChange
  12. isDdl       [是否是ddl变更操作,比如create table/drop table]
  13. sql     [具体的ddl sql]
  14. rowDatas    [具体insert/update/delete的变更数据,可为多条,1个binlog event事件可对应多条变更,比如批处理]
  15. beforeColumns [Column类型的数组]
  16. afterColumns [Column类型的数组]
  17. Column
  18. index
  19. sqlType     [jdbc type]
  20. name        [column name]
  21. isKey       [是否为主键]
  22. updated     [是否发生过变更]
  23. isNull      [值是否为null]
  24. value       [具体的内容,注意为文本]

说明:

  • 可以提供数据库变更前和变更后的字段内容,针对binlog中没有的name,isKey等信息进行补全
  • 可以提供ddl的变更语句

HA机制设计

canal的ha分为两部分,canal server和canal client分别有对应的ha实现

  • canal server:  为了减少对mysql dump的请求,不同server上的instance要求同一时间只能有一个处于running,其他的处于standby状态.
  • canal client: 为了保证有序性,一份instance同一时间只能由一个canal client进行get/ack/rollback操作,否则客户端接收无法保证有序。

整个HA机制的控制主要是依赖了zookeeper的几个特性,watcher和EPHEMERAL节点(和session生命周期绑定),可以看下我之前zookeeper的相关文章。

Canal Server:


大致步骤:

  1. canal server要启动某个canal instance时都先向zookeeper进行一次尝试启动判断  (实现:创建EPHEMERAL节点,谁创建成功就允许谁启动)
  2. 创建zookeeper节点成功后,对应的canal server就启动对应的canal instance,没有创建成功的canal instance就会处于standby状态
  3. 一旦zookeeper发现canal server A创建的节点消失后,立即通知其他的canal server再次进行步骤1的操作,重新选出一个canal server启动instance.
  4. canal client每次进行connect时,会首先向zookeeper询问当前是谁启动了canal instance,然后和其建立链接,一旦链接不可用,会重新尝试connect.

Canal Client的方式和canal server方式类似,也是利用zokeeper的抢占EPHEMERAL节点的方式进行控制.

最后

项目的代码: https://github.com/alibabatech/canal

这里给出了如何快速启动Canal Server和Canal Client的例子,如有问题可随时联系

Quick Start

Client Example

时间: 2024-11-05 09:26:25

阿里巴巴开源项目: canal 基于mysql数据库binlog的增量订阅&消费的相关文章

alibaba/canal 阿里巴巴 mysql 数据库 binlog 增量订阅&消费组件

基于日志增量订阅&消费支持的业务: 数据库镜像 数据库实时备份 多级索引 (卖家和买家各自分库索引) search build 业务cache刷新 价格变化等重要业务消息 项目介绍 名称:canal [k?'næl] 译意: 水道/管道/沟渠 语言: 纯java开发 定位: 基于数据库增量日志解析,提供增量数据订阅&消费,目前主要支持了mysql 关键词: mysql binlog parser / real-time / queue&topic 工作原理 mysql主备复制实现

Spring mvc整合mybatis基于mysql数据库实现用户增删改查及其分页显示的完整入门实例【转】

Spring mvc整合mybatis例子, 基于mysql数据库实现对用户的增.删.改.查,及分页显示的完整例子. 查询显示用户 添加用户 更新用户 官方验证: 项目截图 必须修改applicationContext.xml中mysql的配置为本地的,否则启动失败. 另外jar包多一个ehcache.jar无关紧要,删除即可. 1. 使用阿里巴巴Druid连接池(高效.功能强大.可扩展性好的数据库连接池.监控数据库访问性能.支持Common-Logging.Log4j和JdkLog,监控数据库

在Jena框架下基于MySQL数据库实现本体的存取操作

在Jena框架下基于MySQL数据库实现本体的存取操作 转自:http://blog.csdn.net/jtz_mpp/article/details/6224311 最近在做一个基于本体的管理系统.其中对本体的操作部分,我使用的是Jena框架:数据模型是基于本体的语义模型:数据存储则是MySQL 5.5.9版本.由此看来,将本体模型存入数据库和从数据库中取出模型是常用的操作,这里总结一下我学到的方法. 我使用的开发环境是Eclipse3.6,在开发前要将必要的与jena有关的类包加入java

FTP服务(4)基于MySQL数据库认证

基于MySQL数据库认证 说明:本实验在两台CentOS主机上实现,一台做为FTP服务器,一台做数据库服务器 数据库服务器和FTP服务器系统都是CentOS7 注意:如果是CentOS6系统请执行yum install vsftpd pam_mysql命令安装连接组件 MariaDB服务器: yum install mariadb-server -y systemctl start mariadb mysql MariaDB [(none)]> CREATE DATABASE vsftpddb;

阿里巴巴开源项目:分布式数据库同步系统otter(解决中美异地机房)

项目背景 阿里巴巴B2B公司,因为业务的特性,卖家主要集中在国内,买家主要集中在国外,所以衍生出了杭州和美国异地机房的需求,同时为了提升用户体验,整个机房的架构为双A,两边均可写,由此诞生了otter这样一个产品. otter第一版本可追溯到04~05年,此次外部开源的版本为第4版,开发时间从2011年7月份一直持续到现在,目前阿里巴巴B2B内部的本地/异地机房的同步需求基本全上了otte4. 目前同步规模: 同步数据量6亿 文件同步1.5TB(2000w张图片) 涉及200+个数据库实例之间的

使用canal获取mysql的binlog传输给kafka,并交由logstash获取实验步骤

1. 实验环境 CPU:4 内存:8G ip:192.168.0.187 开启iptables防火墙 关闭selinux java >=1.5 使用yum方式安装的java,提前配置好JAVA_HOME环境变量 vim /etc/profile.d/java.sh #!/bin/bash export JAVA_HOME=/usr/lib/jvm/java-1.8.0-openjdk # 路径根据实际情况而定 export PATH=$PATH:$JAVA_HOME/bin source /et

基于mysql数据库集群的360度水平切割

1.why sharding? 我们都知道,信息行业发展日益迅速,积累下来的数据信息越来越多,互联网公司门要维护的数据日益庞大.设想一下,假如腾讯公司只用一个数据库的一张表格来存储所有qq注册用户的登录相关信息,毫不夸张的说,那好比就是一场灾难,腾讯少说都有好几个亿的用户,所有的信息都存储在一个数据库的一张表中,那么我们的sleect语句那得多么的消耗硬件资源,用户体验度那是相当的差的,基本上不能去运行了,那谁还去用qq,那怎么办呢,数据分割这时候就派上用场了,它根据数据的特性,将一张表单上的内

数据库连接池(基于MySQL数据库)

使用JDBC是怎么保证数据库客户端和数据库服务端进行连接的? 通过代码: conn=DriverManager.getConnection(url, username, password); JDBC通过这条代码方法的调用建立了一条客户端应用程序到后端数据库的物理连接.期间发生了大量的基于TCP的客户端与服务端的交互. 由于跨机器的网络传输是由较大的网络开销的,所以时间花销很大. 传统的多线程JDBC服务中,我们每进行一次服务都需要分配一个线程,每一个线程去建立一个数据库连接,当这条服务结束之后

阿里巴巴开源项目nginx_concat_module企业部署实例

公司的前端开发工程师今天找我,让我给他搞下淘宝的一个开源项目 nginx_concat_module 模块,将该模块添加到线上的nginx上去. 简介 nginx_concat_module 是淘宝研发的针对 nginx 的文件合并模块,主要用于合并前端代码减少 http 请求数.如果你的应用环境中部署了 nginx,那么可以考虑尝试此模块减少请求数. 部署: 1.准备工具 [[email protected] ~]# yum install gcc gcc-c++ make wget subv