NOIP1138 聪明的质监员

描述

小T 是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi 。检验矿产的流程是: 
1 、给定m 个区间[Li ,Ri]; 
2 、选出一个参数 W; 
3 、对于一个区间[Li ,Ri],计算矿石在这个区间上的检验值Yi:
Yi=Σ1*Σvj,Σ的循环变量为j,这里j要满足j∈[Li,Ri]且wj≥W,这里j是矿石编号。

这批矿产的检验结果Y为各个区间的检验值之和。ΣYi,Σ的循环变量为i,1≤i≤m。

若这批矿产的检验结果与所给标准值S 相差太多,就需要再去检验另一批矿产。小T不想费时间去检验另一批矿产,所以他想通过调整参数W 的值,让检验结果尽可能的靠近标准值S,即使得S-Y 的绝对值最小。请你帮忙求出这个最小值。

输入格式

第一行包含三个整数n ,m,S,分别表示矿石的个数、区间的个数和标准值。 接下来的n 行,每行 2 个整数,中间用空格隔开,第i+1 行表示 i 号矿石的重量 wi 和价值vi 。 
接下来的m 行,表示区间,每行2 个整数,中间用空格隔开,第i+n+1 行表示区间[Li, Ri]的两个端点 Li 和Ri 。注意:不同区间可能重合或相互重叠。

输出格式

输出只有一行,包含一个整数,表示所求的最小值。

测试样例1

输入

5 3 15 
1 5 
2 5 
3 5 
4 5 
5 5 
1 5 
2 4 
3 3

输出

10

对样例的解释 
当W 选4 的时候,三个区间上检验值分别为 20、5 、0 ,这批矿产的检验结果为 25,此时与标准值S 相差最小为10。

备注

对于10% 的数据,有 1 ≤n ,m≤10; 
对于30% 的数据,有 1 ≤n ,m≤500 ; 
对于50% 的数据,有 1 ≤n ,m≤5,000; 
对于70% 的数据,有 1 ≤n ,m≤10,000 ; 
对于100%的数据,有 1 ≤n ,m≤200,000,0 < wi, vi≤10^6,0 < S≤10^12,1 ≤Li ≤Ri ≤n 。

注意区间的处理,每次检查都要再算一遍前缀和

#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn = 220005;
struct STONE{
    long long w;
    long long v;
};
long long n,m,s,l[maxn],r[maxn],sum[maxn],sumv[maxn],all,ans = 98765432112345L;
STONE stone[maxn];
void input(){
    cin>>n>>m>>s;
    all = 0;
    for(int i = 1;i <= n;i++){
        scanf("%lld%lld",&stone[i].w,&stone[i].v);
        if(all < stone[i].w) all = stone[i].w;
    }
    for(int i = 1;i <= m;i++){
        scanf("%lld%lld",&l[i],&r[i]);
    }
}
bool check(long long t){
    sum[0] = sumv[0] = 0;
    for(int i = 1;i <= n;i++){
            if(stone[i].w >= t){
                sumv[i] = sumv[i-1] + stone[i].v;
                sum[i] = sum[i-1] + 1;
            }else{
                sumv[i] = sumv[i-1];
                sum[i] = sum[i-1];
            }
    }
    all = 0;
    for(int i = 1;i <= m;i++){
        all += (sumv[r[i]] - sumv[l[i]-1]) * (sum[r[i]] - sum[l[i]-1]);
    }
    ans = min(abs(all - s),ans);
    return all < s;
}
void div(){
    long long lans = 0,rans = all,mans;
    while(lans <= rans){
        mans = (lans + rans) >> 1;
        if(check(mans)){
            rans = mans - 1;
        }else{
            lans = mans + 1;
        }
    }
    check(mans+1);
    if(mans > 0)check(mans-1);
    cout<<ans;
}
int main(){
    input();
    div();
    return 0;
}

时间: 2024-12-11 15:50:01

NOIP1138 聪明的质监员的相关文章

NOIP2011聪明的质监员题解

631. [NOIP2011] 聪明的质监员 ★★   输入文件:qc.in   输出文件:qc.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 小 T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有n个矿石,从 1 到n逐一编号,每个矿石都有自己的重量wi以及价值vi.检验矿产的流程是: 1. 给定 m个区间[Li,Ri]: 2. 选出一个参数W: 3. 对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: Yi=∑j1×∑jvj, j∈[

vijos1740 聪明的质监员 (二分、区间求和)

http://www.rqnoj.cn/problem/657 https://www.vijos.org/p/1740 P1740聪明的质检员 请登录后递交 标签:NOIP提高组2011[显示标签] 描述 小 T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有n个矿石,从1到n逐一编号,每个矿石都有自己的重量wi以及价值vi.检验矿产的流程是: 1.给定m个区间[Li,Ri]: 2.选出一个参数W: 3.对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: Yi = ∑1

P1314 聪明的质监员

P1314 聪明的质监员 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[Li,Ri]: 2 .选出一个参数 W: 3 .对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: 这批矿产的检验结果Y 为各个区间的检验值之和.即:Y1+Y2...+Ym 若这批矿产的检验结果与所给标准值S 相差太多,就需要再去检验另一批矿产.小T 不想费时间去

noip2011 聪明的质监员

P1314 聪明的质监员 322通过 1.5K提交 题目提供者该用户不存在 标签二分2011NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[Li,Ri]: 2 .选出一个参数 W: 3 .对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: 这批矿产的检验结果Y 为各个区间的

NOIP2011提高组 聪明的质监员 -SilverN

题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[Li,Ri]: 2 .选出一个参数 W: 3 .对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: 这批矿产的检验结果Y 为各个区间的检验值之和.即:Y1+Y2...+Ym 若这批矿产的检验结果与所给标准值S 相差太多,就需要再去检验另一批矿产.小T 不想费时间去检验另一批矿产,所以他想通

[Codevs] 1138 聪明的质监员

1138 聪明的质监员 2011年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题目描述 Description 小 T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有n 个矿石,从1到n 逐一编号,每个矿石都有自己的重量wi 以及价值vi.检验矿产的流程是:见图 若这批矿产的检验结果与所给标准值S 相差太多,就需要再去检验另一批矿产.小T不想费时间去检验另一批矿产,所以他想通过调整参数W 的值,让检验结果尽可能的靠近标准值

luogu P1314 聪明的质监员 x

P1314 聪明的质监员(至于为什么选择这个题目,可能是我觉得比较好玩呗) 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[Li,Ri]: 2 .选出一个参数 W: 3 .对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: 这批矿产的检验结果Y 为各个区间的检验值之和.即:Y1+Y2...+Ym 若这批矿产的检验结果与所给标准值S 相差

2011 聪明的质监员

聪明的质监员 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[Li,Ri]: 2 .选出一个参数 W: 3 .对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: 这批矿产的检验结果Y 为各个区间的检验值之和.即:Y1+Y2...+Ym 若这批矿产的检验结果与所给标准值S 相差太多,就需要再去检验另一批矿产.小T 不想费时间去检验另一批矿

P1314 聪明的质监员[二分答案]

题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 nn 个矿石,从 11到nn 逐一编号,每个矿石都有自己的重量 w_i*w**i* 以及价值v_i*v**i* .检验矿产的流程是: 1 .给定mm个区间[L_i,R_i][Li,Ri]: 2 .选出一个参数WW: 3 .对于一个区间[L_i,R_i][Li,Ri],计算矿石在这个区间上的检验值Y_i*Y**i*: 这批矿产的检验结果YY 为各个区间的检验值之和.即:Y_1+Y_2...+Y_mY1+Y2...+*Y**