使用excel计算指数平滑和移动平均

指数平滑法

原数数据如下:

点击数据——数据分析

选择指数平滑

最一次平滑

由于我们选择的区域是B1:B22,第一个单元格“钢产量”,被当做标志,所以我们应该勾选标志。当我们勾选了标志后,列中的第一个单元格将不被用于计算,计算从第二个单元格开始。

结果如下:

做二次平滑

这里,我们不再采用标志,所以数据区间选择在C3:C22

对比一下

阻尼系数=0.3

阻尼系数=0.05

阻尼系数=0.9

画在一张图上对比下,可见阻尼系数越大,曲线越平。

移动平均(一阶和二阶)

同理可以使用excel计算得到如下表:

相关数据文件:

来自为知笔记(Wiz)

附件列表

时间: 2024-10-18 14:02:27

使用excel计算指数平滑和移动平均的相关文章

简单移动平均线、加权移动平均线、指数平滑移动平均

移动平均线的种类 移动平均线可分为"算术移动平均线"."加权移动平均线"."指数平滑移动平均线"三种. 1.算术移动平均线(MA) 算术移动平均线是简单而普遍的移动平均线.平均线是指算术平均数,计算方法为一组数字相加,除以该组数据的组成个数. 以5天移动平均线为便,计算方法如下: MA=(C1+C2+C3+C4+C5)/5 一般公式:MA=(C1+C2+C3+C4+C5+....+Cn)/n C:第一日收盘价 n:移动平均数周期 "移动

EMA指数平滑移动平均

EXPMA(Exponential Moving Average)译指数平滑移动平均线,简称EMA, 求当日价格X的N日指数平滑移动平均,在股票公式中一般表达为:EMA(X,N),其中X为当日收盘价,N为天数.它真正的公式表达是:当日指数平均值=平滑系数*(当日指数值-昨日指数平均值)+昨日指数平均值:平滑系数=2/(周期单位+1):由以上公式推导开,得到:EMA(N)=2*X/(N+1)+(N-1)*EMA(N-1)/(N+1): 可是这个公式的前提是要知道前一天的EMA,如果已知N天的价格,

时间序列分析之一次指数平滑法

指数平滑法最早是由C.C Holt于1958年提出的,后来经统计学家深入研究使得指数平滑法非常丰富,应用也相当广泛,一般有简单指数平滑法.Holt双参数线性指数平滑法.Winter线性和季节性指数平滑法.这里的指数平滑法是指最简单的一次指数平滑. 指数平滑法是一种特殊的加权平均法,对本期观察值和本期预测值赋予不同的权重,求得下一期预测值的方法. 一次指数平滑法公式如下:  ————————-(1)  为t+1期的指数平滑趋势预测值: 为t期的指数平滑趋势预测值: 为t期实际观察值: 为权重系数,

转载 ------ 三次指数平滑法

原文地址: http://blog.csdn.net/nieson2012/article/details/51980943 目录 ?1.指数平滑定义及公式 ?2.一次指数平滑 ?3二次指数平滑 ?4.三次指数平滑 ?5指数平滑系数α的确定 1.指数平滑的定义及公式 产生背景:指数平滑由布朗提出.他认为时间序列的态势具有稳定性或规则性,所以时间序列可被合理地顺势推延:他认为最近的过去态势,在某种程度上会持续的未来,所以将较大的权数放在最近的资料. 基本原理:指数平滑法是移动平均法中的一种,其特点

预测算法——指数平滑法

 目录 ?1.指数平滑定义及公式 ?2.一次指数平滑 ?3二次指数平滑 ?4.三次指数平滑 ?5指数平滑系数α的确定 1.指数平滑的定义及公式 产生背景:指数平滑由布朗提出.他认为时间序列的态势具有稳定性或规则性,所以时间序列可被合理地顺势推延:他认为最近的过去态势,在某种程度上会持续的未来,所以将较大的权数放在最近的资料. 基本原理:指数平滑法是移动平均法中的一种,其特点在于给过去的观测值不一样的权重,即较近期观测值的权数比较远期观测值的权数要大.根据平滑次数不同,指数平滑法分为一次指数平滑法

实验6-EXCEL时间序列分析-指数平滑

EXCEL时间序列分析-指数平滑法      指数平滑法是从移动平均法发展而来的,是一种改良的加权平均法,在不舍弃历史数据的前提下,对离预测期较近的历史数据给予较大的 权数,权数由近到远按指数规律递减.       指数平滑法根据本期的实际值和预测值,并借助于平滑系数α进行加权平均计算,预测下一期的值.它是对时间序列数据给予加权平滑,从而获得其变化规律与趋势.  我们还是以"企业季度数据"为例,利用Excel分析工具库---"指数平滑"分析工具预测2012年第3季度

二次指数平滑预测法 Python实现

从以往的时间序列值,进行指数平滑,做两次预测出下一个时间的估计值. 目录结构如下: Python代码如下: forecast.py # -*-coding:utf-8 -*- # Time:2015.11.25 sangjin __author__ = 'hunterhug' import matplotlib #matplotlib.use("Agg") #matplotlib.use("TkAgg") #matplotlib.use("gtk"

时间序列 R 08 指数平滑 Exponential smoothing

1.1 简单指数平滑 "simple exponential smoothing" (SES) SES适用于不计趋势与季节性的时间序列 我们在可以使用平均值模型和naive模型来做粗略的预测(点击查看),他们懂预测方法分别是 - 使用最后一个值(naive模型) - 使用前面值的平均数(平均值) 这里的简单指数平滑是用的前面几个值的加权平均数,越靠近最后的权重越大,后面的权重指数下降 SES的公式如下 y^T+1|T=αyT+α(1?α)yT?1+α(1?α)2yT?2+? α就是平滑

指数平滑算法

对时间序列的预测,用的最多的是指数平滑算法,算法不复杂. 首先理解一个基本公式: 指数平滑法的基本公式是: 式中, St--时间t的平滑值: yt--时间t的实际值: St ? 1--时间t-1的平滑值: a--平滑常数,其取值范围为[0,1]: 说明: 1. 此公式用t-1时刻的平滑值和t时刻的hi实际值来计算t时刻的平滑值 2. a是系数,越接近1的话,远期数据对于计算结果影响越小,越接近0,则影响越大 用newlisp表达公式如下: (define (cal-basic real-t1 s