论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS 

ICLR 2016 

  摘要:近年来 CNN 在监督学习领域的巨大成功 和 无监督学习领域的无人问津形成了鲜明的对比,本文旨在链接上这两者之间的缺口。提出了一种 deep convolutional generative adversarial networks (DCGANs),that have certain architecture constraints。

  引言:在计算机视觉领域,可以通过海量无标签数据,从中学习到好的表示(good immediate representation)然后将其应用到众多监督学习任务当中去,例如:image classification。一种较好的方法就是,利用产生式对抗网络来完成,然后利用 产生器 和 判别器的一部分来作为特征提取器,进行其他监督任务的学习。众所周知,GANs 的缺点是:unstable to train ,这样就会导致产生了毫无意义的输出。甚少有 paper 尝试去理解和可视化 GANs 到底学习到了什么,以及多层 GANs 的即可表示。

  本文的贡献点在于:

  1. 本文提出一些网络结构上的约束,使得训练过程更加稳定。并将此类型的结构称为:Deep Convolutional GANs (DCGAN)

  2. 利用训练好的 discriminators 进行 image classification tasks,取得了和其他 unsupervised learning algorithm 相当的结果

  3. 作者将 GANs 的 filter 进行了可视化处理,表明特定的 filter 学到了 draw specific objects

  4. We show that generators have interesting vector arithmetic properties allowing for easy manipulation of many semantic qualities of generated samples

  Approach to Model Architecture :

  已经有很多尝试将 GANs 做 scale up,但是几乎都不怎么成功。作者在尝试用 supervised learning 常用的方法做 scale 时,也遇到了很多困难。但是,在作者做了很多模型探索之后(extensive model exploration)得到了一些结构上的技巧来改善训练的稳定性,并且允许得到更高分辨率的图像,采用更深的产生式模型。

  本文核心的方法,主要从以下三个方面进行网络结构上的设计和改变 :

  第一个是:the all convolutional net . 将 deteministic spatial pooling function (such as: maxpooling)with strided convolutions,使得网络可以学习其自己的 spatial downsampling。我们利用这种方法到我们的 generator 当中,允许其学习自己的 spatial upsampling,and discriminator 。

  第二个是:the trend towards eliminating fully connected layers on top of convolutional features.  作者发现:global average pooling 增强了模型的稳定性,但是损害了收敛的速度。A middle ground of directly connecting the highest convolutional features to the input and output respectively of the generatively of the generator and discriminator worked well. 具体的网络结构见下图:

  第三个是:Batch Normalizaiton,which stabilizes learning by normalizing the input to each unit to have zero mean and unit variance。但是,直接对所有的 layer 都使用这种技术,就会出现问题:resulted in sample oscillation and model instability 。这种困难是通过 不对 generator output layer 和 discriminator input layer 采用这种方法,就行了。

  The ReLU activation is used in generator with the exception of the output layer which uses the Tanh function.

  作者总结了一个列表,对稳定的训练 GANs 提供了下面的几条建议:

  Details of Adversarial Training :

  作者在三个数据集上进行了训练,分别是:Large-scale Scene Understanding (LSUN),Image Net-1k and Faces dataset 。

  Expirical Validation of DCGANs Capabilities .

  1. Classifying CIFAR-10 using GANs as a Feature Extractor :

  一种评价无监督表示学习算法的方式是:将其作为 特征提取器(feature extractor)在监督的 dataset 上,然后评价线性模型在这些特征上的拟合能力(evaluate the performance of linear models fitted on top of these features)。

  作者将 K-means 这种无监督学习方法作为一种 baseline,并且与之在 cifar-10 数据集上进行了对比。

  2. Classifying SVHN digits using GANs as a feature extractor .

  在 SVHN dataset 上,作者将 DCGAN 的 discriminator 提取出来的特征,在 supervised learning 上做了测试。作者类似于监督学习的思路,将数据集划分开来。本文的方法取得了不错的效果,并且表明:the CNN architecture used in DCGANs is not the key contributing factor of the model‘s performance by training a purely supervised CNN with the same architecture on the same data and optimizing this model via random search over 64 hyperparameter trials .

  Investgating and Visualizing the Intervals of the Networks .

  

  

  

  

  

  

  

  

  

  

  

时间: 2024-10-14 22:43:22

论文笔记之:UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS的相关文章

【论文笔记】Reading Scene Text in Deep Convolutional Sequences

论文来源:http://www.eecs.qmul.ac.uk/~ccloy/files/aaai_2016_reading.pdf 接收会议:AAAI 2016(the Association for the Advance of Artificial Intelligence)人工智能领域非常不错的一个会议. 论文架构: Abstract 1.Introduction 2.Related Work 3.Deep-Text Recurrent Networks (DTRN) 3.1 Seque

转:无监督特征学习——Unsupervised feature learning and deep learning

http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning by A

paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning b

【转载】 无监督特征学习——Unsupervised feature learning and deep learning

无监督特征学习——Unsupervised feature learning and deep learning 分类: Compression Computer Vision Machine Learning 杂感2012-07-31 15:48 36848人阅读 评论(61) 收藏 举报 目录(?)[+] 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accurac

【转帖】UFLDL Tutorial(the main ideas of Unsupervised Feature Learning and Deep Learning)

UFLDL Tutorial From Ufldl Jump to: navigation, search Description: This tutorial will teach you the main ideas of Unsupervised Feature Learning and Deep Learning.  By working through it, you will also get to implement several feature learning/deep le

论文笔记之:Curriculum Learning of Multiple Tasks

Curriculum Learning of Multiple Tasks CVPR 2015 对于多任务的学习(Multi-Task Learning)像是属性识别等任务,之前都是每一个属性训练一个分类器,后来有了深度学习,大家都用共享卷积层的方式来联合的学习(Joint Learning).让网络去学习各个任务或者说各个属性之间潜在的联系,最后对其进行分类,或者逻辑回归.本文对这种做法提出了其诟病,说是:多个task之间的相互关系并不相同,有的有关系 有的关系很弱或者基本不相关等等. 如上图

论文笔记-Sequence to Sequence Learning with Neural Networks

大体思想和RNN encoder-decoder是一样的,只是用来LSTM来实现. paper提到三个important point: 1)encoder和decoder的LSTM是两个不同的模型 2)deep LSTM表现比shallow好,选用了4层的LSTM 3)实践中发现将输入句子reverse后再进行训练效果更好.So for example, instead of mapping the sentence a,b,c to the sentence α,β,γ, the LSTM i

目标检测论文解读2——Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition

背景 用ConvNet方法解决图像分类.检测问题成为热潮,但这些方法都需要先把图片resize到固定的w*h,再丢进网络里,图片经过resize可能会丢失一些信息.论文作者发明了SPP pooling(空间金字塔池化)层,让网络可以接受任意size的输入. 方法 首先思考一个问题,为什么ConvNet需要一个固定size的图片作为输入,我们知道,Conv层只需要channel固定(彩色图片3,灰度图1),但可以接受任意w*h的输入,当然输出的w*h也会跟着变化:然而,后面的FC层却需要固定长度的

论文笔记之:Visual Tracking with Fully Convolutional Networks

ICCV 2015  CUHK 本文利用 FCN 来做跟踪问题,但开篇就提到并非将其看做是一个 黑匣子,只是用来提取特征,而是在大量的图像和 ImageNet 分类任务上关于 CNN 的 feature 做了大量的深度的研究.这些发现促使他们设计了该跟踪系统,他们发现: 不同的卷积层会从不同的角度来刻画目标.顶层的 layer 编码了更多的关于 语义特征并且可以作为种类检测器,而底层的层懈怠了更多的具有判别性的信息,并且可以更好的区分具有相似外观的目标.在跟踪的过程中利用这两种层的不断切换而完成