[PR & ML 4] [Introduction] Model Selection & The Curse of Dimension

这两部分内容比较少,都是直觉上的例子和非正式的定义,当然这本书中绝大多数定义都是非正式的,但方便理解。后面深入之后会对这两个章节有详细的阐述。

时间: 2024-10-15 22:50:56

[PR & ML 4] [Introduction] Model Selection & The Curse of Dimension的相关文章

CCJ PRML Study Note - Chapter 1.3-1.4 : Model Selection & the Curse of Dimensionality

Chapter 1.3-1.4 : Model Selection & the Curse of Dimensionality Chapter 1.3-1.4 : Model Selection & the Curse of Dimensionality Christopher M. Bishop, PRML, Chapter 1 Introdcution 1. Model Selection In our example of polynomial curve fitting using

[PR & ML 3] [Introduction] Probability Theory

虽然学过Machine Learning和Probability今天看着一part的时候还是感觉挺有趣,听惊呆的,尤其是Bayesian Approach.奇怪发中文的笔记就很多人看,英文就没有了,其实我觉得英文的写得更好呀...囧...一边看一边写一边实现,好慢,求同道中人啊...

[PR & ML 6] [Introduction] Information Theory

[PR & ML 2] [Introduction] Example: Polynomial Curve Fitting

啊啊啊,竟然不支持latex,竟然HTML代码不能包含javascript,代码编辑器也不支持Matlab!!!我要吐槽博客的编辑器...T_T只能贴图凑合看了,代码不是图,但这次为了省脑细胞,写的不简洁,凑合看吧... numPoints = 10; lnlambda = [-Inf -18 0]; M = 9; % [0, 1, 3, 9]; x = linspace(0,1); % gt data for plotting t = sin(2*pi*x); ttest = t + norm

[PR & ML 5] [Introduction] Decision Theory

Spark2 Model selection and tuning 模型选择与调优

Model selection模型选择 ML中的一个重要任务是模型选择,或使用数据为给定任务找到最佳的模型或参数. 这也称为调优. 可以对诸如Logistic回归的单独Estimators进行调整,或者对包括多个算法,特征和其他步骤的整个Pipeline进行调整. 用户可以一次调整整个Pipeline,而不必单独调整Pipeline中的每个元素. MLlib支持使用CrossValidator和TrainValidationSplit等工具进行模型选择.这些工具需要以下items:    Est

scikit-learn:3. Model selection and evaluation

参考:http://scikit-learn.org/stable/model_selection.html 有待翻译,敬请期待: 3.1. Cross-validation: evaluating estimator performance 3.1.1. Computing cross-validated metrics 3.1.1.1. Obtaining predictions by cross-validation 3.1.2. Cross validation iterators 3.

Bias vs. Variance(2)--regularization and bias/variance,如何选择合适的regularization parameter λ(model selection)

Linear regression with regularization 当我们的λ很大时,hθ(x)≍θ0,是一条直线,会出现underfit:当我们的λ很小时(=0时),即相当于没有做regularization,会出现overfit;只有当我们的λ取intermediate值时,才会刚刚好.那么我们怎么自动来选择这个λ的值呢? 正则化时的Jtrain(θ),Jcv(θ),Jtest(θ)的表达式 正则化时的Jtrain(θ),Jcv(θ),Jtest(θ)的表达式不带有regulariz

ISL - Ch.6 Linear Model Selection and Regularization

Q: Why might we want to use another fitting procedure instead of least squares? A: alternative fitting procedures can yield better prediction accuracy and model interpretability. 6.1 Subset Selection 6.1.1 Best Subset Selection Now in order to select