关于相似标准型的讲解, 通常的高等代数教材都是先引入 $\lambda$-矩阵的概念, 将数字矩阵 $A$ 的相似问题转化为特征矩阵 $\lambda I-A$ 的相抵问题来考虑, 然后再求出 $\lambda I-A$ 的法式、不变因子组和初等因子组, 最后便可得到矩阵的有理标准型和 Jordan 标准型. 这种讲授方法十分通用, 也十分适合初学者, 因为它在证明标准型的存在性和唯一性的基础上, 还给出了标准型的具体计算方法. 唯一不足的地方是在将数字矩阵 $A$ 的相似问题转化为特征矩阵 $\lambda I-A$ 的相抵问题时, 过渡比较生硬, 缺乏进一步的说明, 让初学者觉得不甚理解. 事实上, 要真正理解这一过渡, 需要主理想整区上的模理论, 但接受这一理论对大一学生来说过于困难. 因此, 不利用 $\lambda$-矩阵的知识, 而直接给出标准型的存在性证明, 这也是一个折中的办法.
我们先给出有理标准型的直接证明.
定理 设 $A$ 是数域 $\mathbb{K}$ 上的 $n$ 阶方阵, 则存在 $\mathbb{K}$ 上的非异阵 $P$, 使得 $$P^{-1}AP=\mathrm{diag}\{F(d_k(x)),F(d_{k-1}(x)),\cdots,F(d_1(x))\},$$ 其中 $d_i(x)$ 是非常数首一多项式, $d_i(x)\mid d_{i+1}(x)\,(1\leq i\leq k-1)$, $F(d_i(x))$ 是相伴于 $d_i(x)$ 的友阵.
证明 对 $A$ 的阶数 $n$ 进行归纳. 当 $n=1$ 时, 结论显然成立. 设阶数小于 $n$ 时结论成立, 现证 $n$ 阶矩阵 $A$ 的情形. 设 $A$ 的极小多项式为 $m(x)$, $\deg m(x)=m$. 根据友阵的性质可知, $F(d_i(x))$ 的极小多项式是 $d_i(x)$, 再由极小多项式的性质可知, 若定理的结论为真, 则 $$m(x)=[d_k(x),d_{k-1}(x),\cdots,d_1(x)]=d_k(x).$$ 由思考题 9 (6) 的结论可知, 存在 $\alpha\in\mathbb{K}^n$, 使得 $\alpha$ 的极小多项式等于 $A$ 的极小多项式 $m(x)$, 令 $d_k(x)=m(x)$. 再由思考题 9 (2) 的结论可知, $\alpha,A\alpha,\cdots,A^{m-1}\alpha$ 是循环子空间 $C(A,\alpha)$ 的一组基, 并且 $A$ 限制在 $C(A,\alpha)$ 上在这组基下的表示矩阵是 $F(d_k(x))$. 将 $\alpha,A\alpha,\cdots,A^{m-1}\alpha$ 扩张为 $\mathbb{K}^n$ 的一组基 $\{\alpha,A\alpha,\cdots,A^{m-1}\alpha,\beta_1,\cdots,\beta_{n-m}\}$, 则有 $$A(\alpha,A\alpha,\cdots,A^{m-1}\alpha,\beta_1,\cdots,\beta_{n-m})=(\alpha,A\alpha,\cdots,A^{m-1}\alpha,\beta_1,\cdots,\beta_{n-m})\begin{pmatrix} F(d_k(x)) & * \\ 0 & B \\ \end{pmatrix},\cdots\cdots (1)$$ 其中 $B$ 是 $\mathbb{K}$ 上的 $n-m$ 阶矩阵. 由归纳假设, 存在 $\mathbb{K}$ 上的 $n-m$ 阶非异阵 $Q$, 使得 $$Q^{-1}BQ=\mathrm{diag}\{F(d_{k-1}(x)),\cdots,F(d_1(x))\},$$ 其中 $d_i(x)$ 是非常数首一多项式, $d_i(x)\mid d_{i+1}(x)\,(1\leq i\leq k-2)$. 特别地, $d_{k-1}(x)$ 是 $B$ 的极小多项式. 由 (1) 式可知 $A$ 相似于 $\begin{pmatrix} F(d_k(x)) & * \\ 0 & B \\ \end{pmatrix}$, 从而由 $m(A)=0$ 可得 $m(B)=0$, 再由极小多项式的性质可得 $d_{k-1}(x)\mid m(x)=d_k(x)$. 令 $$P=(\alpha,A\alpha,\cdots,A^{m-1}\alpha,\beta_1,\cdots,\beta_{n-m})\begin{pmatrix} I_m & 0 \\ 0 & Q \\ \end{pmatrix}=(\alpha,A\alpha,\cdots,A^{m-1}\alpha,\gamma_1,\cdots,\gamma_{n-m}),$$ 则 $$AP=P\begin{pmatrix} F(d_k(x)) & * & \cdots & * \\ & F(d_{k-1}(x)) & & \\ & & \ddots & \\ & & & F(d_1(x)) \\ \end{pmatrix}.\cdots\cdots (2)$$ 对比定理的结论, 我们只要证明: 可以适当地选取线性无关的列向量替换 $\{\gamma_1,\cdots,\gamma_{n-m}\}$, 使得消去 (2) 式右边矩阵第一行中的 $*$ 号, 最终得到所需的分块对角阵 $\mathrm{diag}\{F(d_k(x)),F(d_{k-1}(x)),\cdots,F(d_1(x))\}$. 由于每个分块 $F(d_i(x))$ 的讨论都是类似的, 故我们只对 $F(d_{k-1}(x))$ 进行处理.
设 $d_{k-1}(x)=x^t+c_{t-1}x^{t-1}+\cdots+c_1t+c_0$, 则 $$F(d_{k-1}(x))=\begin{pmatrix} & & & -c_0 \\ 1 & & & -c_1 \\ & \ddots & & \vdots \\ & & 1 & -c_{t-1} \end{pmatrix},$$ 于是由 (2) 式可得 $$A\gamma_i=g_i(A)\alpha+\gamma_{i+1}\,(1\leq i\leq t-1),\,\,\,\,A\gamma_t=g_t(A)\alpha-c_0\gamma_1-c_1\gamma_2-\cdots-c_{t-1}\gamma_t,$$ 其中 $g_i(x)\,(1\leq i\leq t)$ 都是由 $*$ 号决定的次数小于 $m$ 的多项式. 上述等式不断迭代, 可得 $$\gamma_i=A^{i-1}\gamma_1+h_i(A)\alpha\,(1\leq i\leq t), \cdots\cdots(3)$$ $$d_{k-1}(A)\gamma_1=h(A)\alpha, \cdots\cdots(4)$$ 其中 $h_i(x),h(x)$ 是多项式. 设 $m(x)=d_k(x)=u(x)d_{k-1}(x)$, 由于 $m(A)=0$, 故在 (4) 式两边同时左乘 $u(A)$ 可得 $$0=m(A)\gamma_1=u(A)d_{k-1}(A)\gamma_1=u(A)h(A)\alpha.$$ 由于 $\alpha$ 的极小多项式是 $m(x)$, 故由思考题 9 (1) 可得 $m(x)\mid u(x)h(x)$, 从而 $d_{k-1}(x)\mid h(x)$. 设 $h(x)=d_{k-1}(x)v(x)$, 则由 (4) 式可得 $d_{k-1}(A)(\gamma_1-v(A)\alpha)=0$. 令 $\delta=\gamma_1-v(A)\alpha$, 我们断言 $\{\alpha,A\alpha,\cdots,A^{m-1}\alpha,\delta,A\delta,\cdots,A^{t-1}\delta\}$ 必线性无关, 否则由 (3) 式容易验证 $\{\alpha,A\alpha,\cdots,A^{m-1}\alpha,\gamma_1,\cdots,\gamma_t\}$ 必线性相关, 这与假设矛盾. 由上述向量组线性无关也可推出 $\{\delta,A\delta,\cdots,A^{t-1}\delta\}$ 线性无关, 从而 $d_{k-1}(x)$ 是 $\delta$ 的极小多项式. 相同的讨论可以对所有的分块 $F(d_i(x))$ 同时进行, 因此我们找到了 $\mathbb{K}^n$ 的一组新基, 它们拼成了非异阵 $P$, 使得定理的结论成立. $\Box$
Jordan 标准型的直接证明已经在新白皮书的 $\S$ 7.2.10 中给出了, 下面我们给出新白皮书的例 7.63 的另一个归纳法的证明, 这个证明技巧性不算强, 但更加清晰易懂.