最小生成树——繁忙的都市

题目描述

城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造。城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接。这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了。每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造。但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求:

1.改造的那些道路能够把所有的交叉路口直接或间接的连通起来。

2.在满足要求1的情况下,改造的道路尽量少。

3.在满足要求1、2的情况下,改造的那些道路中分值最大的道路分值尽量小。

任务:作为市规划局的你,应当作出最佳的决策,选择那些道路应当被修建。

输入格式:

第一行有两个整数n,m表示城市有n个交叉路口,m条道路。接下来m行是对每条道路的描述,u, v, c表示交叉路口u和v之间有道路相连,分值为c。(1≤n≤300,1≤c≤10000)

输出格式:

两个整数s, max,表示你选出了几条道路,分值最大的那条道路的分值是多少。

一道非常裸的最小生成树的题,然而交了四遍N/A才发现 memset 的函数库忘打了 TAT

输出的时候 s 直接输出路口数-1就可以了,因为n个点的连通图最少需要n-1条边,并且这道题只要输出最大的那个值,所以省去了累加求和,直接找出最大值就好了

prim代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
int n,m,map1[1000][1000],dis[1000];
bool pf[1000];
int main()
{
    cin>>n>>m;
    for(int i=1;i<=m;i++)
    {
        int u,v,w;
        cin>>u>>v>>w;
        map1[u][v]=w;
        map1[v][u]=w;
    }
    memset(dis,0x7f,sizeof(dis));
    dis[1]=0;
     memset(pf,1,sizeof(pf));
    for(int i=1;i<=n;i++)
    {
        int k=0;
        for(int j=1;j<=n;j++)
        if(pf[j]&&dis[j]<dis[k]) k=j;
        pf[k]=0;
        for(int j=1;j<=n;j++)
        if(pf[j]&&map1[k][j]!=0&&map1[k][j]<dis[j])
        dis[j]=map1[k][j];
    }
    int o=-1;
    for(int i=1;i<=n;i++)
    if(dis[i]>o)
    o=dis[i];
    cout<<n-1<<" "<<o;
    return 0;
}

对了,郑某说我老是喜欢用prim,所以这道题我特意加了一种克鲁斯卡尔:

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int m,n,u,v,c,maxn,k;
int fa[301];
int find(int x)
{
    if(fa[x]!=x)
    fa[x]=find(fa[x]);
    return fa[x];
}
void unionn(int x,int y)
 {
    int fx=find(x);
    int fy=find(y);
    if(fx!=fy)fa[fx]=fy;
}
struct Node
{
    int x, y, v;
    bool operator<(const Node &b)
    const
    {
        return v<b.v;
    }
}a[51000];
int main()
{
    cin>>n>>m;
    for(int i=1;i<=m;i++)
    {
        cin>>u>>v>>c;
        a[i]=(Node){u, v, c};
    }
    for(int i=1;i<=n;i++)
    fa[i]=i;
    sort(a+1,a+m+1);
    for(int i=1;i<=m;i++)
    {
        if(find(fa[a[i].x])!=find(fa[a[i].y]))
        {
            unionn(a[i].x,a[i].y);
            maxn=a[i].v;
            k++;
        }
        if(k==n-1)break;
    }
    cout<<n-1<<" "<<maxn;
    return 0;
}

以上代码基本上是模板,就懒得加注释了,各位看客自行脑补吧 (??ω??)

时间: 2025-01-19 09:54:11

最小生成树——繁忙的都市的相关文章

BZOJ 1083: [SCOI2005]繁忙的都市【Kruscal最小生成树裸题】

1083: [SCOI2005]繁忙的都市 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2925  Solved: 1927[Submit][Status][Discuss] Description 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道 路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连 接.这些道路是双向的,且把所有的交叉路口直接或

bzoj1083: [SCOI2005]繁忙的都市(最小生成树)

1083: [SCOI2005]繁忙的都市 题目:传送门 题解: 一道大水题: 第一问明显输出n-1 第二问最小生成树 秒切 代码: 1 #include<cstdio> 2 #include<cstring> 3 #include<cstdlib> 4 #include<cmath> 5 #include<algorithm> 6 using namespace std; 7 struct node 8 { 9 int x,y,c; 10 }a

vijos P1190繁忙的都市(Kruskal)(最小生成树)

P1190  繁忙的都市 城市C是一个非常繁忙的大都市,城市 中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之 间最多有一条道路相连接.这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了.每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行 改造.但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求: 1.改造的那些道路能够把所有的交叉路口直接或间接的连通起来.

BZOJ 1083:[SCOI2005]繁忙的都市(最小生成树)

1083: [SCOI2005]繁忙的都市 Description 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接.这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了.每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造.但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求: 1. 改造的那些道路能够把

1083: [SCOI2005]繁忙的都市

---恢复内容开始--- 1083: [SCOI2005]繁忙的都市 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1611  Solved: 1040[Submit][Status][Discuss] Description 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接.这些道路是双向的,且

BZOJ 1083: [SCOI2005]繁忙的都市(MST)

裸的最小生成树..直接跑就行了 ---------------------------------------------------------------------- #include<cstdio> #include<algorithm> #include<vector> #define rep(i,n) for(int i=0;i<n;i++) #define addEdge(u,v,w) MST.edges.push_back((KRUSKAL::Ed

[SCOI2005][BZOJ1083] 繁忙的都市

1083: [SCOI2005]繁忙的都市 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 1534  Solved: 994[Submit][Status][Discuss] Description 城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接.这些道路是双向的,且把所有的交叉路口直接或间接的

BZOJ1083|SCOI2005繁忙的都市|最小生成树

Description城市C是一个非常繁忙的大都市,城市中的道路十分的拥挤,于是市长决定对其中的道路进行改造.城市C的道路是这样分布的:城市中有n个交叉路口,有些交叉路口之间有道路相连,两个交叉路口之间最多有一条道路相连接.这些道路是双向的,且把所有的交叉路口直接或间接的连接起来了.每条道路都有一个分值,分值越小表示这个道路越繁忙,越需要进行改造.但是市政府的资金有限,市长希望进行改造的道路越少越好,于是他提出下面的要求: 1. 改造的那些道路能够把所有的交叉路口直接或间接的连通起来. 2. 在

【最小瓶颈生成树】【最小生成树】【kruscal】bzoj1083 [SCOI2005]繁忙的都市

本意是求最小瓶颈生成树,但是我们可以证明:最小生成树也是最小瓶颈生成树(其实我不会).数据范围很小,暴力kruscal即可. 1 #include<cstdio> 2 #include<algorithm> 3 using namespace std; 4 struct Edge{int u,v,w;void Read(){scanf("%d%d%d",&u,&v,&w);}}edges[10001]; 5 bool operator &