设计模式之访问者模式(Visitor)摘录

23种GOF设计模式一般分为三大类:创建型模式、结构型模式、行为模式。

创建型模式抽象了实例化过程,它们帮助一个系统独立于如何创建、组合和表示它的那些对象。一个类创建型模式使用继承改变被实例化的类,而一个对象创建型模式将实例化委托给另一个对象。创建型模式有两个不断出现的主旋律。第一,它们都将关于该系统使用哪些具体的类的信息封装起来。第二,它们隐藏了这些类的实例是如何被创建和放在一起的。整个系统关于这些对象所知道的是由抽象类所定义的接口。因此,创建型模式在什么被创建,谁创建它,它是怎样被创建的,以及何时创建这些方面给予了很大的灵活性。它们允许用结构和功能差别很大的“产品”对象配置一个系统。配置可以是静态的(即在编译时指定),也可以是动态的(在运行时)。

结构型模式涉及到如何组合类和对象以获得更大的结构。结构型类模式采用继承机制来组合接口或实现。结构型对象模式不是对接口和实现进行组合,而是描述了如何对一些对象进行组合,从而实现新功能的一些方法。因为可以在运行时刻改变对象组合关系,所以对象组合方式具有更大的灵活性,而这种机制用静态类组合是不可能实现的。

行为模式涉及到算法和对象间职责的分配。行为模式不仅描述对象或类的模式,还描述它们之间的通信模式。这些模式刻画了在运行时难以跟踪的复杂的控制流。它们将用户的注意力从控制流转移到对象间的联系方式上来。行为类模式使用继承机制在类间分派行为。行为对象模式使用对象复合而不是继承。一些行为对象模式描述了一组对等的对象怎样相互协作以完成其中任一个对象都无法单独完成的任务。

创建型模式包括:1、FactoryMethod(工厂方法模式);2、Abstract Factory(抽象工厂模式);3、Singleton(单例模式);4、Builder(建造者模式、生成器模式);5、Prototype(原型模式).

结构型模式包括:6、Bridge(桥接模式);7、Adapter(适配器模式);8、Decorator(装饰模式);9、Composite(组合模式);10、Flyweight(享元模式);11、Facade(外观模式);12、Proxy(代理模式).

行为模式包括:13、TemplateMethod(模板方法模式);14、Strategy(策略模式);15、State(状态模式);16、Observer(观察者模式);17、Memento(备忘录模式);18、Mediator(中介者模式);19、Command(命令模式);20、Visitor(访问者模式);21、Chain of Responsibility(责任链模式);22、Iterator(迭代器模式);23、Interpreter(解释器模式).

Factory Method:定义一个用于创建对象的接口,让子类决定将哪一个类实例化。Factory Method使一个类的实例化延迟到其子类。

Abstract Factory:提供一个创建一系列相关或相互依赖对象的接口,而无需指定他们具体的类。

Singleton:保证一个类仅有一个实例,并提供一个访问它的全局访问点。

Builder:将一个复杂对象的构建与它的表示分离,使得同样的构建过程可以创建不同的表示。

Prototype:用原型实例指定创建对象的种类,并且通过拷贝这个原型来创建新的对象。

Bridge:将抽象部分与它的实现部分分离,使它们都可以独立地变化。

Adapter:将一个类的接口转换成客户希望的另外一个接口。Adapter模式使得原本由于接口不兼容而不能一起工作的那些类可以一起工作。

Decorator:动态地给一个对象添加一些额外的职责。就扩展功能而言, Decorator模式比生成子类方式更为灵活。

Composite:将对象组合成树形结构以表示“部分-整体”的层次结构。Composite使得客户对单个对象和复合对象的使用具有一致性。

Flyweight:运用共享技术有效地支持大量细粒度的对象。

Facade:为子系统中的一组接口提供一个一致的界面, Facade模式定义了一个高层接口,这个接口使得这一子系统更加容易使用。

Proxy:为其他对象提供一个代理以控制对这个对象的访问。

Template Method:定义一个操作中的算法的骨架,而将一些步骤延迟到子类中。Template Method使得子类可以不改变一个算法的结构即可重定义该算法的某些特定步骤。

Strategy:定义一系列的算法,把它们一个个封装起来, 并且使它们可相互替换。本模式使得算法的变化可独立于使用它的客户。

State:允许一个对象在其内部状态改变时改变它的行为。对象看起来似乎修改了它所属的类。

Observer:定义对象间的一种一对多的依赖关系,以便当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并自动刷新。

Memento:在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态。这样以后就可将该对象恢复到保存的状态。

Mediator:用一个中介对象来封装一系列的对象交互。中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。

Command:将一个请求封装为一个对象,从而使你可用不同的请求对客户进行参数化;对请求排队或记录请求日志,以及支持可取消的操作。

Visitor:表示一个作用于某对象结构中的各元素的操作。它使你可以在不改变各元素的类的前提下定义作用于这些元素的新操作。

Chain of Responsibility:为解除请求的发送者和接收者之间耦合,而使多个对象都有机会处理这个请求。将这些对象连成一条链,并沿着这条链传递该请求,直到有一个对象处理它。

Iterator:提供一种方法顺序访问一个聚合对象中各个元素, 而又不需暴露该对象的内部表示。

Interpreter:给定一个语言, 定义它的文法的一种表示,并定义一个解释器, 该解释器使用该表示来解释语言中的句子。

Visitor:(1)、意图: 表示一个作用于某对象结构中的各元素的操作。它使你可以在不改变各元素的类的前提下定义作用于这些元素的新操作。

(2)、适用性:A、一个对象结构包含很多类对象,它们有不同的接口,而你想对这些对象实施一些依赖于其具体类的操作。B、需要对一个对象结构中的对象进行很多不同的并且不相关的操作,而你想避免让这些操作”污染”这些对象的类。Visitor使得你可以将相关的操作集中起来定义在一个类中。当该对象结构被很多应用共享时,用Visitor模式让每个应用仅包含需要用到的操作。C、定义对象结构的类很少改变,但经常需要在此结构上定义新的操作。改变对象结构类需要重定义对所有访问者的接口,这可能需要很大的代价。如果对象结构类经常改变,那么可能还是在这些类中定义这些操作较好。

(3)、优缺点:A、访问者模式使得易于增加新的操作:访问者使得增加依赖于复杂对象结构的构件的操作变得容易了。仅需增加一个新的访问者即可在一个对象结构上定义一个新的操作。相反,如果每个功能都分散在多个类之上的话,定义新的操作时必须修改每一类。B、访问者集中相关的操作而分离无关的操作:相关的行为不是分布在定义该对象结构的各个类上,而是集中在一个访问者中。无关行为却被分别放在它们各自的访问者子类中。这就既简化了这些元素的类,也简化了在这些访问者中定义的算法。所有与它的算法相关的数据结构都可以被隐藏在访问者中。C、增加新的ConcreteElement类很困难:Visitor模式使得难以增加新的Element的子类。每添加一个新的ConcreteElement都要在Visitor中添加一个新的抽象操作,并在每一个ConcreteVisitor类中实现相应的操作。有时可以在Visitor中提供一个缺省的实现,这一实现可以被大多数的ConcreteVisitor继承,但这与其说是一个规律还不如说是一个例外。所以在应用访问者模式时考虑关键的问题是系统的哪个部分会经常变化,是作用于对象结构上的算法呢还是构成该结构的各个对象的类。如果老是有新的ConcreteElement类加入进来的话,Visitor类层次将变得难以维护。在这种情况下,直接在构成该结构的类中定义这些操作可能更容易一些。如果Element类层次是稳定的,而你不断地增加操作或修改算法,访问者模式可以帮助你管理这些改动。D、通过类层次进行访问:一个迭代器可以通过调用节点对象的特定操作来遍历整个对象结构,同时访问这些对象。但是迭代器不能对具有不同元素类型的对象结构进行操作。E、累积状态:当访问者访问对象结构中的每一个元素时,它可能会累积状态。如果没有访问者,这一状态将作为额外的参数传递给进行遍历的操作,或者定义为全局变量。F、破坏封装:访问者无法假定ConcreteElement接口的功能足够强,足以让访问者进行它们的工作。结果是,该模式常常迫使你提供访问元素内部状态的公共操作,这可能会破坏它的封装性。

(4)、相关模式:A、Composite:访问者可以用于对一个由Composite模式定义的对象结构进行操作。B、Interpreter:访问者可以用于解释。

(5)、访问者模式适用于数据结构稳定的系统。它把数据结构和作用于数据结构上的操作分离开,使得操作集合。优点:新增加操作很容易,因为增加新操作就相当于增加一个访问者,访问者模式将有关的行为集中到一个访问者对象中。

(6)、Visitor模式在不去破坏类的前提下,为类提供增加新的操作。Visitor模式的关键是双分派(Double-Dispatch)的技术。C++语言支持的是单分派。双分派意味着执行的操作将取决于请求的种类和接收者的类型。

(7)、Visitor模式可以使得Element在不修改自己的同时增加新的操作,但是这也带来了至少以下的两个显著问题:A、破坏了封装性:Visitor模式要求Visitor可以从外部修改Element对象的状态,这一般通过两个方式来实现。i、Element提供足够的public接口,使得Visitor可以通过调用这些接口达到修改Element状态的目的;ii、Element暴露更多的细节给Visitor,或者让Element提供public的实现给Visitor(当然也给了系统中其它的对象),或者将Visitor声明为Element的friend类,仅将细节暴露给Visitor。但是无论哪种情况,特别是后者都将破坏封装性原则(实际上就是C++的friend机制得到了很多的面向对象专家的诟病)。B、ConcreteElement的扩展很困难:每增加一个Element的子类,就要修改Visitor的接口,使得可以提供给这个新增加的子类的访问机制。或者增加一个用于处理新增类的visit()接口,或者重载一个处理新增类的visit()操作,或者要修改RTTI(运行时类型识别:Runtime type identification)方式实现的visit()实现。无论哪种方式都给扩展新的Element子类带来了困难。RTTI给接口带来了简单一致性,但是付出的代价是时间(RTTI的实现)和代码的Hard编码(要进行强制转换)。

示例代码1:

#include <iostream>
#include <string>
#include <vector>

using namespace std;

class Man;
class Woman;

//行为
class Action
{
public:
	virtual void GetManConclusion(Man* concreteElementA) = 0;
	virtual void GetWomanConclusion(Woman* concreteElementB) = 0;
};

//成功
class Success : public Action
{
public:
	virtual void GetManConclusion(Man* concreteElementA)
	{
		cout<<"男人成功时,背后有个伟大的女人"<<endl;
	}

	virtual void GetWomanConclusion(Woman* concreteElementB)
	{
		cout<<"女人成功时,背后有个没用的男人"<<endl;
	}
};

//失败
class Failure : public Action
{
public:
	virtual void GetManConclusion(Man* concreteElementA)
	{
		cout<<"男人失败时,背后有个伟大的女人"<<endl;
	}

	virtual void GetWomanConclusion(Woman* concreteElementB)
	{
		cout<<"女人失败时,背后有个没用的男人"<<endl;
	}
};

//抽象人类
class Person
{
public:
	virtual void Accept(Action* visitor) = 0;
};

//男人
class Man : public Person
{
public:
	virtual void Accept(Action* visitor)
	{
		visitor->GetManConclusion(this);
	}
};

//女人
class Woman : public Person
{
public:
	virtual void Accept(Action* visitor)
	{
		visitor->GetWomanConclusion(this);
	}
};

//对象结构类
class ObjectStructure
{
private:
	vector<Person*> m_personList;
public:
	void Add(Person* p)
	{
		m_personList.push_back(p);
	}

	void Display(Action* a)
	{
		vector<Person*>::iterator p = m_personList.begin();

		while (p != m_personList.end()) {
			(*p)->Accept(a);
			p ++;
		}
	}
};

//客户端
int main()
{
	ObjectStructure* os = new ObjectStructure();
	os->Add(new Man());
	os->Add(new Woman());

	Success* success = new Success();
	os->Display(success);

	Failure* fl = new Failure();
	os->Display(fl);

	/*result
		男人成功时,背后有个伟大的女人
		女人成功时,背后有个没用的男人
		男人失败时,背后有个伟大的女人
		女人失败时,背后有个没用的男人
	*/

	return 0;
}

示例代码2:

Visitor.h:

#ifndef _VISITOR_H_
#define _VISITOR_H_

class ConcreteElementA;
class ConcreteElementB;
class Element;

class Visitor
{
public:
	virtual ~Visitor();
	virtual void VisitConcreteElementA(Element* elm) = 0;
	virtual void VisitConcreteElementB(Element* elm) = 0;
protected:
	Visitor();
private:
};

class ConcreteVisitorA : public Visitor
{
public:
	ConcreteVisitorA();
	virtual ~ConcreteVisitorA();
	virtual void VisitConcreteElementA(Element* elm);
	virtual void VisitConcreteElementB(Element* elm);
protected:
private:
};

class ConcreteVisitorB : public Visitor
{
public:
	ConcreteVisitorB();
	virtual ~ConcreteVisitorB();
	virtual void VisitConcreteElementA(Element* elm);
	virtual void VisitConcreteElementB(Element* elm);
protected:
private:
};

#endif//~_VISITOR_H_

Visitor.cpp:

#include "Visitor.h"
#include "Element.h"
#include <iostream>

using namespace std;

Visitor::Visitor()
{

}

Visitor::~Visitor()
{

}

ConcreteVisitorA::ConcreteVisitorA()
{

}

ConcreteVisitorA::~ConcreteVisitorA()
{

}

void ConcreteVisitorA::VisitConcreteElementA(Element* elm)
{
	cout<<"I will visit ConcreteElementA ..."<<endl;
}

void ConcreteVisitorA::VisitConcreteElementB(Element* elm)
{
	cout<<"I will visit ConcreteElementB ..."<<endl;
}

ConcreteVisitorB::ConcreteVisitorB()
{

}

ConcreteVisitorB::~ConcreteVisitorB()
{

}

void ConcreteVisitorB::VisitConcreteElementA(Element* elm)
{
	cout<<"I will visit ConcreteElementA ..."<<endl;
}

void ConcreteVisitorB::VisitConcreteElementB(Element* elm)
{
	cout<<"I will visit ConcreteElementB ..."<<endl;
}

Element.h:

#ifndef _ELEMENT_H_
#define _ELEMENT_H_

class Visitor;

class Element
{
public:
	virtual ~Element();
	virtual void Accept(Visitor* vis) = 0;
protected:
	Element();
private:
};

class ConcreteElementA : public Element
{
public:
	ConcreteElementA();
	~ConcreteElementA();
	void Accept(Visitor* vis);
protected:
private:
};

class ConcreteElementB : public Element
{
public:
	ConcreteElementB();
	~ConcreteElementB();
	void Accept(Visitor* vis);
protected:
private:
};

#endif//~_ELEMENT_H_

Element.cpp:

#include "Element.h"
#include "Visitor.h"
#include <iostream>

using namespace std;

Element::Element()
{

}

Element::~Element()
{

}

void Element::Accept(Visitor* vis)
{

}

ConcreteElementA::ConcreteElementA()
{

}

ConcreteElementA::~ConcreteElementA()
{

}

void ConcreteElementA::Accept(Visitor* vis)
{
	vis->VisitConcreteElementA(this);
	cout<<"visiting ConcreteElementA ..."<<endl;
}

ConcreteElementB::ConcreteElementB()
{

}

ConcreteElementB::~ConcreteElementB()
{

}

void ConcreteElementB::Accept(Visitor* vis)
{
	cout<<"visiting ConcreteElementB ..."<<endl;
	vis->VisitConcreteElementB(this);
}

main.cpp:

#include "Element.h"
#include "Visitor.h"
#include <iostream>

using namespace std;

int main()
{
	Visitor* vis = new ConcreteVisitorA();
	Element* elm = new ConcreteElementA();
	elm->Accept(vis);

	/*result
		I will visit ConcreteElementA ...
		visiting ConcreteElementA ...
	*/

	return 0;
}

访问者模式结构图:

参考文献:

1、《大话设计模式C++》

2、《设计模式精解----GoF23种设计模式解析》

3、《设计模式----可复用面向对象软件的基础》

设计模式之访问者模式(Visitor)摘录

时间: 2024-10-12 19:36:33

设计模式之访问者模式(Visitor)摘录的相关文章

设计模式(17) 访问者模式(VISITOR) C++实现

意图: 表示一个作用于某对象结构的各元素的操作.它使你可以再不改变各元素的类的前提下定义作用于这些元素的新操作. 动机: 之前在学校的最后一个小项目就是做一个编译器,当时使用的就是访问者模式. 在静态分析阶段,将源程序表示为一个抽象语法树,编译器需要在抽象语法树的基础上实施某些操作以进行静态语义分析.可能需要定义许多操作以进行类型检查.代码优化.流程分析.检查变量是否在使用前被赋值,等等. 这个需求的特点是:要求对不同的节点进行不同的处理. 常规设计方法:不同的节点封装不同的操作. 缺点是,节点

[设计模式] 23 访问者模式 visitor Pattern

在GOF的<设计模式:可复用面向对象软件的基础>一书中对访问者模式是这样说的:表示一个作用于某对象结构中的各元素的操作.它使你可以在不改变各元素的类的前提下定义作用于这些元素的新操作.访问者模式把数据结构和作用于结构上的操作之间的耦合解脱开,使得操作集合可以相对自由地演化.该模式的目的是要把处理从数据结构分离出来.访问者模式让增加新的操作很容易,因为增加新的操作就意味着增加一个新的访问者.访问者模式将有关的行为集中到一个访问者对象中.   初次接触,定义会显得晦涩并且难于理解,没关系,LZ来陪

【设计模式】—— 访问者模式Visitor

对于某个对象或者一组对象,不同的访问者,产生的结果不同,执行操作也不同.此时,就是访问者模式的典型应用了. 应用场景 1 不同的子类,依赖于不同的其他对象 2 需要对一组对象,进行许多不相关的操作,又不想在类中是现在这些方法 3 定义的类很少改变,但是执行的操作却经常发生改变. 回到顶部 模式结构 Context 环境角色 class Context{ List<Node> list = new ArrayList(); public void add(Node node) { list.ad

设计模式入门之访问者模式Visitor

Set集合的配置 数据表的创建:表关系一个员工拥有多个身份 create table EMPLOYEE ( id INT NOT NULL auto_increment, first_name VARCHAR(20) default NULL, last_name VARCHAR(20) default NULL, salary INT default NULL, PRIMARY KEY (id) ); create table CERTIFICATE ( id INT NOT NULL aut

设计模式:访问者(Visitor)模式

设计模式:访问者(Visitor)模式 一.前言    什么叫做访问,如果大家学过数据结构,对于这点就很清晰了,遍历就是访问的一般形式,单独读取一个元素进行相应的处理也叫作访问,读取到想要查看的内容+对其进行处理就叫做访问,那么我们平常是怎么访问的,基本上就是直接拿着需要访问的地址(引用)来读写内存就可以了.    为什么还要有一个访问者模式呢,这就要放到OOP之中了,在面向对象编程的思想中,我们使用类来组织属性,以及对属性的操作,那么我们理所当然的将访问操作放到了类的内部,这样看起来没问题,但

访问者模式 Visitor 行为型 设计模式(二十七)

访问者模式 Visitor <侠客行>是当代作家金庸创作的长篇武侠小说,新版电视剧<侠客行>中,开篇有一段独白: “茫茫海外,传说有座侠客岛,岛上赏善罚恶二使,每隔十年必到中原武林,向各大门派下发放赏善罚恶令, 强邀掌门人赴岛喝腊八粥,拒接令者,皆造屠戮,无一幸免,接令而去者,杳无音讯,生死未仆,侠客岛之行,已被视为死亡之旅.” 不过话说电视剧,我总是觉得老版的好看. 意图 表示一个作用于某对象结构中的各元素的操作. 它使你可以在不改变各元素类的前提下定义作用于这些元素的新操作.

设计模式之备忘录模式(Memento)摘录

23种GOF设计模式一般分为三大类:创建型模式.结构型模式.行为模式. 创建型模式抽象了实例化过程,它们帮助一个系统独立于如何创建.组合和表示它的那些对象.一个类创建型模式使用继承改变被实例化的类,而一个对象创建型模式将实例化委托给另一个对象.创建型模式有两个不断出现的主旋律.第一,它们都将关于该系统使用哪些具体的类的信息封装起来.第二,它们隐藏了这些类的实例是如何被创建和放在一起的.整个系统关于这些对象所知道的是由抽象类所定义的接口.因此,创建型模式在什么被创建,谁创建它,它是怎样被创建的,以

设计模式之策略模式(Strategy)摘录

23种GOF设计模式一般分为三大类:创建型模式.结构型模式.行为模式. 创建型模式抽象了实例化过程,它们帮助一个系统独立于如何创建.组合和表示它的那些对象.一个类创建型模式使用继承改变被实例化的类,而一个对象创建型模式将实例化委托给另一个对象.创建型模式有两个不断出现的主旋律.第一,它们都将关于该系统使用哪些具体的类的信息封装起来.第二,它们隐藏了这些类的实例是如何被创建和放在一起的.整个系统关于这些对象所知道的是由抽象类所定义的接口.因此,创建型模式在什么被创建,谁创建它,它是怎样被创建的,以

设计模式之代理模式(Proxy)摘录

23种GOF设计模式一般分为三大类:创建型模式.结构型模式.行为模式. 创建型模式抽象了实例化过程,它们帮助一个系统独立于如何创建.组合和表示它的那些对象.一个类创建型模式使用继承改变被实例化的类,而一个对象创建型模式将实例化委托给另一个对象.创建型模式有两个不断出现的主旋律.第一,它们都将关于该系统使用哪些具体的类的信息封装起来.第二,它们隐藏了这些类的实例是如何被创建和放在一起的.整个系统关于这些对象所知道的是由抽象类所定义的接口.因此,创建型模式在什么被创建,谁创建它,它是怎样被创建的,以