[家里蹲大学数学杂志]第405期中国科学院数学与系统科学研究院2015年夏令营分析与代数试题

该试卷分两部分: 分析 $5$ 题 (共 $50$ 分), 代数 $5$ 题 (共 $50$ 分). 考试时间: $120$ 分钟

1. ($10‘$) 对哪些实数 $\al$, 级数 $\dps{\vsm{n}\sex{\frac{1}{n}-\sin \frac{1}{n}}^\al}$ 收敛?

2. ($6‘$) 设 $y$ 是 $[0,1]$ 上 $C^1$ 光滑实函数, 满足方程 $$\bex y‘‘(x)+y‘(x)-y(x)=0,\quad x\in (0,1), \eex$$ 且 $y(0)=y(1)=0$. 试证: $y(x)=0,\ x\in [0,1]$.

3. ($10‘$) 设 $f$ 是 $\bbR^2$ 上的有界连续实函数, 定义 $$\bex g(x)=\int_{\bbR} \frac{f(x,t)}{1+t^2}\rd t,\quad x\in\bbR. \eex$$ 试证: $g(x)$ 是 $\bbR$ 上的连续函数.

4. ($10‘$) 设 $f$ 是 $[1,\infty)$ 上连续可微实函数, 满足 $f(1)=1$, 且 $$\bex f‘(x)=\frac{1}{f^2(x)+x^2},\quad x\in (1,\infty). \eex$$ 试证: $\dps{\vlm{x}f(x)}$ 存在且不超过 $\dps{1+\frac{1}{4}\pi}$.

5. ($14‘=2\times 7‘$) 设 $f$ 是 $[0,1]$ 上连续实函数, 计算下列极限并证明你的结论: (1). $\dps{\vlm{n}\int_0^1 x^nf(x)\rd x}$; (2). $\dps{\vlm{n}n\int_0^1 x^nf(x)\rd x}$.

6. 对整数 $a,b$, 定义 $a\equiv b\ (\mod m)$ 当且仅当 $m\mid(a-b)$ (即 $m$ 整除 $a-b$). 正整数 $m$ 取何值时, 一下线性方程组有解? $$\bex \sedd{\ba{rrrrrrl} x&+&2y&-&z&\equiv&1\ (\mod m)\\ 2x&-&3y&+&z&\equiv&4\ (\mod m)\\ 4x&+&y&-&z&\equiv&9\ (\mod m) \ea} \eex$$

7. 设 $\tt$ 是实数, $n$ 是自然数, 求 $$\bex \sex{\ba{cc} e^{-i\tt}&2i\sin \tt\\ 0&e^{i\tt} \ea}^n. \eex$$

8. 设 $A,B\in M_n(\bbC)$ ($n$ 阶复矩阵), 回答以下问题并说明理由: (1). $AB$ 与 $BA$ 是否相似? (2). $AB$ 与 $BA$ 是否有相同的特征多项式? (3). $AB$ 与 $BA$ 是否有相同的极小多项式?

9. 证明实数域上的有限维线性空间不可能是有限个真子空间的并, 再讨论有限域情形.

10. 设 $T:V\to V$ 是复数域 $\bbC$ 上有限维线性空间 $V$ 上的幂零算子 (即存在正整数 $k$, 使得 $T^k=0$), $I$ 是单位算子. 求线性算子 $S$, $Q$ 使得 $S^2=I+T$, $Q(I+T)=I$.

时间: 2024-11-08 17:29:18

[家里蹲大学数学杂志]第405期中国科学院数学与系统科学研究院2015年夏令营分析与代数试题的相关文章

[家里蹲大学数学杂志]第250期中国科学院大学2013年数学分析考研试题参考解答

1($25'$) 计算: (1)($10'$) $\dps{\lim_{n\to\infty}\sin^2\sex{\pi\sqrt{n^2+n}}}$. 解答: $$\beex \bea \mbox{原极限} &=\lim_{n\to\infty}\sin^2\sex{\pi\sqrt{n^2+n}-\pi n}\\ &=\lim_{n\to\infty}\sin^2\frac{\pi n}{\sqrt{n^2+n}+n}\\ &=\sin^2\sex{\lim_{n\to\in

[家里蹲大学数学杂志]第260期华南师范大学2013年数学分析考研试题参考解答

1已给出一个函数的表达式 $F(x)$, 其为 $f(x)$ 的原函数, 求 $\dps{\int xf(x)\rd x}$. 解答: $$\beex \bea \int xf'(x)\rd x &=\int x\rd f(x)\\ &=xf(x)-\int f(x)\rd x\\ &=xF'(x)-F(x). \eea \eeex$$ 2已知 $$\bex \sum_{i=1}^{2k}(-1)^{i-1}a_i=0. \eex$$ 试证: $$\bex \ls{n}\sum_{

[家里蹲大学数学杂志]第262期广州大学2013年数学分析考研试题参考解答

一.($3\times 15'=45'$) 1.  求 $\dps{\ls{n}(a^n+b^n)^\frac{1}{n}}$, 其中 $a>b>0$. 解答: 由 $$\bex a<(a^n+b^n)^\frac{1}{n}<2^\frac{1}{n}a \eex$$ 及 $\dps{\ls{n}2^\frac{1}{n}=1}$ (参考第二大题第 4 小题), 夹逼原理知原极限 $=a$. 2.  求 $\dps{\lim_{x\to 0}\frac{\arctan x-x}{

[家里蹲大学数学杂志]第055期图像滤波中的方向扩散模型

$\bf 摘要$: 本文给出了王大凯等编的<图像处理中的偏微分方程方法>第 5.4.1 节的详细论述. $\bf 关键词$: 图像滤波; 方向扩散模型; matlab 编程 1. 模型的建立 从保护图像边缘的观点出发, 我们希望扩散是沿着平行于边缘的切线方向 (即垂直于 $\n I$ 的方向) 进行. 于是得到如下 PDE: $$\bee\label{1:df} I_t=I_{\xi\xi}, \eee$$ 其中 $\xi(\perp \n I)$ 为单位矢量. 我们化简 \eqref{1:d

[家里蹲大学数学杂志]第054期图像分割中的无边缘活动轮廓模型

$\bf 摘要$: 本文给出了王大凯等编的<图像处理中的偏微分方程方法>第 4.4 节的详细论述. $\bf 关键词$: 图像分割; 活动轮廓模型; matlab 编程 1 模型的建立 在图像中, 对象与背景的区别有时表现为平均灰度的明显不同. 由于这类图像既没有明显的边缘 ($\sev{\n I}$ 大), 也缺乏明显的纹理 (texture, 灰度变化有一定的规律, 并形成一定的 patten), 故测地线活动轮廓 (geodesic active contour, GAC, 或 snak

[家里蹲大学数学杂志]第053期Legendre变换

$\bf 题目$. 设 $\calX$ 是一个 $B$ 空间, $f:\calX\to \overline{\bbR}\sex{\equiv \bbR\cap\sed{\infty}}$ 是连续的凸泛函并且 $f(x)\not\equiv \infty$. 若定义 $f^*:\calX^*\to \overline{\bbR}$ 为 $$\bex f^*(x^*)=\sup_{x\in\calX}\sed{\sef{x^*,x}-f(x)}\quad\sex{\forall\ x^*\in \c

[家里蹲大学数学杂志]第056期Tikhonov 泛函的变分

设 $\scrX$, $\scrY$ 是 Hilbert 空间, $T\in \scrL(\scrX,\scrY)$, $y_0\in\scrY$, $\alpha>0$. 则 Tikhonov 泛函 $$\bee\label{T} J_\alpha(x)=\sen{Tx-y_0}^2+\alpha\sen{x}^2\quad \sex{x\in \scrX} \eee$$存在唯一最小解 $x^\alpha\in \scrX$, 且 $x^\alpha$ 适合 Euler-Lagrange 方程

[家里蹲大学数学杂志]第039期高等数学习题集

同济大学数学系主编, 高等数学 . 第二版, 下册. 2009年, 同济大学出版社. 7 空间解析几何与向量代数 7.5 空间直线及其方程 1(3). 求过点 P(2,-3,3) 且与平面 \pi: x+2y-3z-2=0 垂直的直线 l 的方程. 解答: 直线 l 过点 P(2,-3,3) , 且方向向量与平面法向量 {\bf n}=\sed{1,2,-3} 平行, 为 {\bf s}=\sed{1,2,-3} . 故其方程为 \bex \cfrac{x-2}{1}=\cfrac{y+8}{2

[家里蹲大学数学杂志]第187期实数集到非负实数集的双射有无穷多个间断点

设 $f:(-\infty,+\infty)\to [0,\infty)$ 是双射, 证明: $f$ 有无穷多个间断点. 证明: 用反证法. 若 $f$ 仅有有穷多个间断点 $x_1<x_2<\cdots<x_n$. 则 $f$ 在 $(x_{i-1},x_i)\ (i=1,\cdots,n+1, x_0=-\infty, x_{n+1}=+\infty)$ 上连续单射. 由此不难推出 $f$ 在 $(x_{i-1},x_i)$ 上严格单调\footnote{否则, $\exists\