hdu1695(莫比乌斯反演)

传送门:GCD

题意:求[1,n],[1,m]gcd为k的对数。

分析:莫比乌斯入反演门题,gcd(x,y)==k等价于gcd(x/k,y/k)==1,求出[1,n][1,m]互质的对数,在减去[1,2][2,1]之类重复的个数即答案。

莫比乌斯反演:46ms

#pragma comment(linker,"/STACK:1024000000,1024000000")
#include <cstdio>
#include <cstring>
#include <string>
#include <cmath>
#include <limits.h>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 100000000
#define inf 0x3f3f3f3f
#define eps 1e-6
#define N 1000000
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
#define PII pair<int,int>
using namespace std;
inline int read()
{
    char ch=getchar();int x=0,f=1;
    while(ch>‘9‘||ch<‘0‘){if(ch==‘-‘)f=-1;ch=getchar();}
    while(ch<=‘9‘&&ch>=‘0‘){x=x*10+ch-‘0‘;ch=getchar();}
    return x*f;
}
bool vis[N+5];
int mu[N+5],prime[N+5];
void Moblus()
{
    memset(vis,false,sizeof(vis));
    mu[1]=1;
    int tot=0;
    for(int i=2;i<=N;i++)
    {
        if(!vis[i])
        {
            prime[tot++]=i;
            mu[i]=-1;
        }
        for(int j=0;j<tot;j++)
        {
            if(i*prime[j]>N)break;
            vis[i*prime[j]]=true;
            if(i%prime[j]==0)
            {
                mu[i*prime[j]]=0;
                break;
            }
            else
            {
                mu[i*prime[j]]=-mu[i];
            }
        }
    }
}
int main()
{
    int T,a,b,c,d,k,cas=1;
    Moblus();
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        printf("Case %d: ",cas++);
        if(k==0)
        {
            puts("0");
            continue;
        }
        b=b/k;d=d/k;
        if(b>d)swap(b,d);
        LL ans=0,res=0;
        for(int i=1;i<=b;i++)
            ans+=1LL*mu[i]*(b/i)*(d/i);
        for(int i=1;i<=b;i++)
            res+=1LL*mu[i]*(b/i)*(b/i);
        printf("%I64d\n",ans-res/2);
    }
}

欧拉+容斥:484ms

#include <algorithm>
#include <utility>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <string>
#include <queue>
#include <deque>
#include <stack>
#include <cmath>
#include <ctime>
#include <map>
#include <set>
using namespace std;
typedef long long LL;
const int N=100010;
LL euler[N];
int num[N],prime[N][10];
void EulerPrime()
{
    euler[1]=1;
    for(int i=2;i<N;i++)
    {
        if(!euler[i])
        {
            for(int j=i;j<N;j+=i)
            {
                if(!euler[j])euler[j]=j;
                euler[j]=euler[j]*(i-1)/i;
                prime[j][num[j]++]=i;
            }
        }
        euler[i]+=euler[i-1];
    }
    //for(int i=1;i<=20;i++)printf("%d ",num[i]);
}
int sum;
int gcd(int a,int b)
{
    return a%b==0?b:gcd(b,a%b);
}
int lcm(int a,int b)
{
    return a/gcd(a,b)*b;
}
void dfs(int i,int lm,int flag,int n,int m)
{
    if(i==num[n])return;
    int x=lcm(prime[n][i],lm);
    sum+=m/x*flag;
    for(int j=i;j<num[n];j++)
        dfs(j+1,x,-flag,n,m);
}
int solve(int m,int n)
{
    sum=0;
    for(int i=0;i<num[n];i++)
    {
        dfs(i,1,1,n,m);
    }
    return sum;
}
int main()
{
    int cas=1,T;
    int a,b,c,d,k;
    EulerPrime();
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
        if(k==0)
        {
            printf("Case %d: ",cas++);
            puts("0");continue;
        }
        if(b>d)swap(b,d);
        b/=k;d/=k;LL ans=euler[b];
        for(int i=b+1;i<=d;i++)
            ans+=b-solve(b,i);
        printf("Case %d: %I64d\n",cas++,ans);
    }
}

时间: 2024-10-14 23:52:27

hdu1695(莫比乌斯反演)的相关文章

hdu1695(莫比乌斯反演)

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1695 题意: 对于 a, b, c, d, k . 有 x 属于 [a, b],  y 属于 [c, d], 求 gcd(x, y) = k 的 x, y 的对数 . 其中 a = b = 1 . 注意: (x, y), (y, x) 算一种情况 . 思路: 莫比乌斯反演 可以参考一下: http://blog.csdn.net/lixuepeng_001/article/details/5057

【HDU1695】GCD(莫比乌斯反演)

[HDU1695]GCD(莫比乌斯反演) 题面 题目大意 求\(a<=x<=b,c<=y<=d\) 且\(gcd(x,y)=k\)的无序数对的个数 其中,你可以假定\(a=c=1\) 所有数都\(<=100000\) 数据组数\(<=3000\) 题解 莫比乌斯反演 作为一道莫比乌斯反演的题目 首先我们要迈出第一步 如果有\(gcd(x,y)=k\) 那么,我们就有\(gcd(\frac{x}{k},\frac{y}{k})=1\) 所以,现在问题相当于转化为了求 \(

hdu-1695 GCD(莫比乌斯反演)

题目链接: GCD Time Limit: 6000/3000 MS (Java/Others)     Memory Limit: 32768/32768 K (Java/Others) Problem Description Given 5 integers: a, b, c, d, k, you're to find x in a...b, y in c...d that GCD(x, y) = k. GCD(x, y) means the greatest common divisor

hdu1695 GCD(莫比乌斯反演)

题意:求(1,b)区间和(1,d)区间里面gcd(x, y) = k的数的对数(1<=x<=b , 1<= y <= d). 知识点: 莫比乌斯反演/*12*/ 线性筛求莫比乌斯反演函数: void Init() { memset(vis,0,sizeof(vis)); mu[1] = 1; cnt = 0; for(int i=2; i<N; i++) { if(!vis[i]) { prime[cnt++] = i; mu[i] = -1; } for(int j=0;

[HAOI2011][bzoj2301] Problem b [莫比乌斯反演+容斥原理+分块前缀和优化]

题面: 传送门 有洛谷就尽量放洛谷链接呗,界面友好一点 思路: 和HDU1695比较像,但是这一回有50000组数据,直接莫比乌斯反演慢慢加的话会T 先解决一个前置问题:怎么处理a,c不是1的情况? 很简单,容斥原理搞之 我们设f(x,y)代表gcd(i,j)==e(1<=i<=x,1<=j<=y)的无序数对(i,j)的个数 那么本题答案相当于f(d,b)-f(c-1,b)-f(a-1,d)+f(a-1,c-1) 再来看反演超时的问题 我们注意到原反演过程中,f(1)==mu(i)

bzoj 2820 / SPOJ PGCD 莫比乌斯反演

那啥bzoj2818也是一样的,突然想起来好像拿来当周赛的练习题过,用欧拉函数写掉的. 求$(i,j)=prime$对数 \begin{eqnarray*}\sum_{i=1}^{n}\sum_{j=1}^{m}[(i,j)=p]&=&\sum_{p=2}^{min(n,m)}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}[i⊥j]\newline&=&\sum_{p=

算法学习——莫比乌斯反演(1)

.. 省选GG了,我果然还是太菜了.. 突然想讲莫比乌斯反演了 那就讲吧! 首先我们看一个等式-- (d|n表示d是n的约束) 然后呢,转换一下 于是,我们就发现! 没错!F的系数是有规律的! 规律is here! 公式: 这个有什么卵用呢? 假如说有一道题 F(n)可以很simple的求出来而求f(n)就比较difficult了,该怎么办呢? 然后就可以用上面的式子了 是莫比乌斯函数,十分有趣 定义如下: 若d=1,则=1 若d=p1*p2*p3...*pk,且pi为互异素数,则=(-1)^k

bzoj2301 [HAOI2011]Problem b【莫比乌斯反演 分块】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2301 很好的一道题.首先把每个询问转化为4个子询问,最后的结果就是这四个子询问的记过加加减减,类似二维前缀和.那么问题转化为在1 <= x <= lmtx, 1 <= y <= lmty时gcd(x, y) == k的对数,这个问题在转化一下,转化成1 <= x <= lmtx / k,1 <= y <= lmty / k时x与y互质的对数.莫比乌斯反

BZOJ2301: [HAOI2011]Problem b 莫比乌斯反演

分析:对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 然后对于求这样单个的gcd(x,y)=k的,我们通常采用莫比乌斯反演 但是,时间复杂度是O(n*(n/k))的,当复杂度很坏的时候,当k=1时,退化到O(n^2),超时 然后进行分块优化,时间复杂度是O(n*sqrt(n)) #include<cstdio> #include<cstring> #include<queue