动态规划
题目描述:
There are a row of n
houses, each house can be painted with one of the k
colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color.
The cost of painting each house with a certain color is represented by a n
x k
cost matrix. For example,costs[0][0]
is the cost of painting house 0
with color 0
; costs[1][2]
is the cost of painting house 1
with color 2
, and so on... Find the minimum cost to paint all houses.
Example
Given n
= 3, k
= 3, costs
=[[14,2,11],[11,14,5],[14,3,10]]
return 10
house 0 is color 2, house 1 is color 3, house 2 is color 2,2 + 5 + 3 = 10
解题思路:
这两题较比之前的题目来讲要简单很多,子状态非常明显,转移方程非常容易得到
1.对于每一个房子,都k种设计方案。第n间房子的每种颜色的方案依赖于,第n-1间房子的其他颜色的最省钱方案。
2.初始状态,只有一间房子的时候,颜色价格方案是已知的。
参考代码:
public int minCostII(int[][] costs) { // Write your code here if(costs.length == 0||costs[0].length == 0) return 0; int n = costs.length; int k = costs[0].length; int[][] dp = new int[n][k]; for(int i = 0; i<k; i++){ dp[0][i] = costs[0][i]; } for(int i=1; i<n; i++){ for(int j = 0; j<k; j++){ int tmp_min = Integer.MAX_VALUE; for(int m = 0; m<k; m++){ if(m==j){ continue; }else{ tmp_min = Math.min(tmp_min, dp[i-1][m]); } } dp[i][j] = tmp_min+costs[i][j]; } } int min = Integer.MAX_VALUE; for(int i=0; i<k; i++){ min = Math.min(min, dp[n-1][i]); } return min; }