K-L变换

K-L变换( Karhunen-Loeve Transform)是建立在统计特性基础上的一种变换,有的文献也称为霍特林(Hotelling)变换,因他在1933年最先给出将离散信号变换成一串不相关系数的方法。K-L变换的突出优点是去相关性好,是均方误差(MSE,Mean Square Error)意义下的最佳变换,它在数据压缩技术中占有重要地位。

K-L(Karhunen-Loeve)变换形式

设X=(X1,X2,…,XN)T为N维随机矢量,mX=E(X)和CX=E{(X-mX)(X-mX)T}分别为其平均值向量和协方差矩阵,ei和λi分别为CX的特征向量和对应的特征值,其中i=1,…,N,并设特征值已按降序排列,即λ1≥λ2≥…≥λN,则K-L变换式为:[1]

Y=A(X-mx) (1.1)

其中变换矩阵A的行为CX的特征值,即:

式中:eij表示第i个特征向量的第j个分量。

K-L变换的性质

①Y的均值向量为零向量0。即:

mY=E{Y} =E{A(X-mX)}=0 (1.2)

②K-L变换使矢量信号各分量不相关,即变换域信号的协方差为对角矩阵。

③K-L反变换式为:

X=A-1Y+mX=ATY+mx (1.3)

④K-L变换是在均方误差准则下失真最小的一种变换,故又称作最佳变换。

这条性质与压缩编码有关。其意义是,如果在数据传输中只传送变换后的前n个系数组成的矢量,则根据这n个系数得到的恢复值可以得到最小的均方误差,其值为:

上式表明,在K-L变换下,最小均方误差值等于变换域中矢量信号的最小的N-n个方差的和。特别有意义的是,如果这些分量的均值为零,则在恢复时只要把这些分量置零,便可以使均方误差最小。

图像信号的K-L变换

K-L变换是一维变换,在对图像信号进行变换时,矢量可以是一幅图像或一幅图像中的子图像。矢量各分量之间的相关性反映了像素之间的相关性。为了得到矢量X,可以将图像或子图像的像素按行行相接或列列相接的次序排列,如图1所示。

(a)行行相接

(b)列列相接

图1由二维图像信号建立矢量信号

在建立了矢量信号之后,就要计算协方差矩阵CX,然后计算的特征矢量才能得到K-L变换矩阵A。

由此可见,尽管K-L变换具有性质(2)和(4)的最佳去相关和误差性能,但是由于求解特征值和特征根并非易事,特别是在维数高时甚至可能求不出来,而且变换矩阵与图像的内容有关,因而难以满足实时处理的要求。但是,K-L变换在变换编码中具有理论指导意义,人们通过比较,寻找出一些性能与K-L变换接近,但实现却容易得多的“准最佳”编码方法。

聚类变换认为:重要的分量就是能让变换后类内距离小的分量。类内距离小,意味着抱团抱得紧。但是,抱团抱得紧,真的就一定容易分类么?

如图1所示,根据聚类变换的原则,我们要留下方差小的分量,把方差大(波动大)的分量丢掉,所以两个椭圆都要向y轴投影,这样悲剧了,两个重叠在一起,根本分不开了。而另一种情况却可以这么做,把方差大的分量丢掉,于是向x轴投影,很顺利就能分开了。因此,聚类变换并不是每次都能成功的。

图1

摧枯拉朽的K-L变换

K-L变换是理论上“最好”的变换:是均方误差(MSE,MeanSquare Error)意义下的最佳变换,它在数据压缩技术中占有重要地位。

聚类变换还有一个问题是,必须一类一类地处理,把每类分别变换,让它们各自抱团。

K-L变换要把所有的类别放在一起变换,希望通过这个一次性的变换,让它们分的足够开。

K-L变换认为:各类抱团紧不一定好区分。目标应该是怎么样让类间距离大,或者让不同类好区分。因此对应于2种K-L变换。

其一:最优描述的K-L变换(沿类间距离大的方向降维)

首先来看个二维二类的例子,如图2所示。

图2

如果使用聚类变换,方向是方差最小的方向,因此降维向方向投影,得到2类之间的距离即为2条红线之间的距离,但是这并不是相隔最远的投影方向。将椭圆投影到方向,得到2类之间的距离为2条绿线之间的距离。这个方向就是用自相关矩阵的统计平均得到的特征向量

设共有M个类别,各类出现的先验概率为

表示来自第i类的向量。则第i类集群的自相关矩阵为:

混合分布的自相关矩阵R是:

然后求出R的特征向量和特征值:

将特征值降序排列(注意与聚类变换区别)

为了降到m维,取前m个特征向量,构成变换矩阵A

以上便完成了最优描述的K-L变换。

为什么K-L变换是均方误差(MSE,MeanSquare Error)意义下的最佳变换?

其中表示n维向量y的第j个分量,表示第个特征分量。

引入的误差

均方误差为

m+1开始的特征值都是最小的几个,所以均方误差得到最小。

以上方法称为最优描述的K-L变换,是沿类间距离大的方向降维,从而均方误差最佳。

本质上说,最优描述的K-L变换扔掉了最不显著的特征,然而,显著的特征其实并不一定对分类有帮助。我们的目标还是要找出对分类作用大的特征,而不应该管这些特征本身的强弱。这就诞生了第2种的K-L变换方法。

其二:最优区分的K-L变换(混合白化后抽取特征)

针对上述问题,最优区分的K-L变换先把混合分布白化,再来根据特征值的分离程度进行排序。

最优区分的K-L变换步骤

首先还是混合分布的自相关矩阵R


然后求出R的特征向量和特征值:

以上是主轴变换,实际上是坐标旋转,之前已经介绍过。

令变换矩阵

则有

这个作用是白化R矩阵,这一步是坐标尺度变换,相当于把椭圆整形成圆,如图3所示。

图3

以二类混合分布问题为例。

分别求出二类的特征向量和特征值,有

则二者的特征向量完全相同,唯一的据别在于其特征根,而且还负相关,即如果取降序排列时,则以升序排列。

为了获得最优区分,要使得两者的特征值足够不同。因此,需要舍弃特征值接近0.5的那些特征,而保留使大的那些特征,按这个原则选出了m个特征向量记作

则总的最优区分的K-L变换就是:

时间: 2024-12-19 19:51:46

K-L变换的相关文章

实验报告: 人脸识别方法回顾与实验分析 【OpenCV测试方法源码】

趁着还未工作,先把过去做的东西整理下出来~   Github源码:https://github.com/Blz-Galaxy/OpenCV-Face-Recognition (涉及个人隐私,源码不包含测试样本,请谅解~) 对实验结果更感兴趣的朋友请直接看 第5章 [摘要]这是一篇关于人脸识别方法的实验报告.报告首先回顾了人脸识别研究的发展历程及基本分类:随后对人脸识别技术方法发展过程中一些经典的流行的方法进行了详细的阐述:最后作者通过设计实验对比了三种方法的识别效果并总结了人脸识别所面临的困难与

1692: [Usaco2007 Dec]队列变换(BZOJ1640强化版)

1692: [Usaco2007 Dec]队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 682  Solved: 280[Submit][Status] Description FJ打算带他的N(1 <= N <= 30,000)头奶牛去参加一年一度的“全美农场主大奖赛”.在这场比赛中,每个参赛者都必须让他的奶牛排成一列,然后领她们从裁判席前依次走过. 今年,竞赛委员会在接受队伍报名时,采用了一种新的登记规则:他们把所有队伍中奶牛名字的首

1640: [Usaco2007 Nov]Best Cow Line 队列变换

1640: [Usaco2007 Nov]Best Cow Line 队列变换 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 543  Solved: 278[Submit][Status] Description FJ打算带着他可爱的N (1 ≤ N ≤ 2,000)头奶牛去参加”年度最佳老农”的比赛.在比赛中,每个农夫把他的奶牛排成一列,然后准备经过评委检验. 比赛中简单地将奶牛的名字缩写为其头字母(the initial letter of e

洛谷OJ P1032 字串变换 解题报告

洛谷OJ P1032 字串变换 解题报告 by MedalPluS   [题目描述] 已知有两个字串 A$, B$ 及一组字串变换的规则(至多6个规则): A1$ -> B1$ A2$ -> B2$ 规则的含义为:在 A$中的子串 A1$ 可以变换为 B1$.A2$ 可以变换为 B2$ …. 例如:A$='abcd' B$='xyz' 变换规则为: ‘abc’->‘xu’ ‘ud’->‘y’ ‘y’->‘yz’ 则此时,A$ 可以经过一系列的变换变为 B$,其变换的过程为:

算法模板——线段树8 (字符串回文变换)

实现功能:输入一个长度为N的由26个大写字母组成的字符串,输入M条指令:"1 x y",将x到y的字串重组构成一个字典序最小的回文串,如果不能构成回文串输出False,否则True并完成变换:"2 x y"输出从x到y的子串:"3 x y t"将x到y的所有字全部变成chr(t+64)(即对应大写字母) 原理:用一个数组维护字母个数即可,然后再附带一个带tag的区间覆盖操作,实现回文串的重组 1 type 2 vec=array[0..26] o

0527.模态视图的概念以及显示、变换方式介绍

学几个单词 dissolve  [d?'z?lv] vi. 溶解:解散 curl  [k??l]  vi. 卷曲 什么是模态视图? 比如UIAlertView,它就是一个模态视图.对于模态视图和普通视图最主要的区别就是模态视图显示的时候不能对其他视图进行操作.主要用来收集或显示一些信息. 思考:弹出警告框的时候,背景视图变暗不能操作,所以说警告框就是一个模态视图. Presentation Style(显示方式) 对于iPhone来讲Presentation Style始终是UIModalPre

[NOIP2002] 提高组P1032 字串变换

题目描述 已知有两个字串 A, B 及一组字串变换的规则(至多6个规则): A1 -> B1 A2 -> B2 规则的含义为:在 A$中的子串 A1 可以变换为 B1.A2 可以变换为 B2 …. 例如:A='abcd'B='xyz' 变换规则为: ‘abc’->‘xu’‘ud’->‘y’‘y’->‘yz’ 则此时,A 可以经过一系列的变换变为 B,其变换的过程为: ‘abcd’->‘xud’->‘xy’->‘xyz’ 共进行了三次变换,使得 A 变换为B.

特征提取之SIFT(尺度不变性特征变换)

SIFT(Scale-invariant feature transform,尺度不变性特征变换)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale和orientation的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 整个算法分为以下几个部分: 1.构建尺度空间 尺度空间理论目的是模拟图像数据的多尺度特性,高斯卷积核是实现尺度变换的唯一卷积核,于是一副二维图像的尺度空间定义

TOT 傅立叶变换 FFT 入门

HDU 1402,计算很大的两个数相乘. FFT 只要78ms,这里: 一些FFT 入门资料:http://wenku.baidu.com/view/8bfb0bd476a20029bd642d85.html (讲解的很详细 http://blog.csdn.net/iamzky/article/details/22712347 (这个也不错 另外算导的其实也蛮好,只是怕公式的看前面的也可. IDFT只是FFT的逆变换,这里想了很久原来只要在FFT 变换后的结果后/N 即可,算实数部分即可. 前

CZT变换(chirp z-transform)

作者:桂. 时间:2018-05-20  12:04:24 链接:http://www.cnblogs.com/xingshansi/p/9063131.html 前言 相比DFT,CZT是完成频谱细化的一种思路,本文主要记录CZT的C代码实现. 一.代码实现 原理主要参考MATLAB接口: 对应C代码实现: Complex.c /*============================= Chirp-Z Transform =============================*/ #i