manacher求最长回文子串算法

原文:http://www.felix021.com/blog/read.php?2040

首先用一个非常巧妙的方式,将所有可能的奇数/偶数长度的回文子串都转换成了奇数长度:在每个字符的两边都插入一个特殊的符号。比如 abba 变成 #a#b#b#a#, aba变成 #a#b#a#。 为了进一步减少编码的复杂度,可以在字符串的开始加入另一个特殊字符,这样就不用特殊处理越界问题,比如 @#a#b#a#(注意,下面的代码是用C语言写 就,由于C语言规范还要求字符串末尾有一个‘\0‘所以正好OK,但其他语言可能会导致越界)。

下面以字符串12212321为例,经过上一步,变成了 S[] = "@#1#2#2#1#2#3#2#1#";

然后用一个数组 P[i] 来记录以字符S[i]为中心的最长回文子串向左/右扩张的长度(包括S[i],也就是把该回文串“对折”以后的长度),比如S和P的对应关系:

S  #  1  #  2  #  2  #  1  #  2  #  3  #  2  #  1  #
P  1  2  1  2  5  2  1  4  1  2  1  6  1  2  1  2  1
(p.s. 可以看出,P[i]-1正好是原字符串中回文串的总长度)

那么怎么计算P[i]呢?该算法增加两个辅助变量(其实一个就够了,两个更清晰)id和mx,其中id表示最大回文子串中心的位置,mx则为id+P[id],也就是最大回文子串的边界。

然后可以得到一个非常神奇的结论,这个算法的关键点就在这里了:如果mx > i,那么P[i] >= MIN(P[2 * id - i], mx - i)。就是这个串卡了我非常久。实际上如果把它写得复杂一点,理解起来会简单很多:

//记j = 2 * id - i,也就是说 j 是 i 关于 id 的对称点。
if (mx - i > P[j])
    P[i] = P[j];
else /* P[j] >= mx - i */
    P[i] = mx - i; // P[i] >= mx - i,取最小值,之后再匹配更新。

当然光看代码还是不够清晰,还是借助图来理解比较容易。

当 mx - i > P[j] 的时候,以S[j]为中心的回文子串包含在以S[id]为中心的回文子串中,由于 i 和 j 对称,以S[i]为中心的回文子串必然包含在以S[id]为中心的回文子串中,所以必有 P[i] = P[j],见下图。


P[j] >= mx - i
的时候,以S[j]为中心的回文子串不一定完全包含于以S[id]为中心的回文子串中,但是基于对称性可知,下图中两个绿框所包围的部分是相同的,也就是
说以S[i]为中心的回文子串,其向右至少会扩张到mx的位置,也就是说 P[i] >= mx -
i。至于mx之后的部分是否对称,就只能老老实实去匹配了。

对于 mx <= i 的情况,无法对 P[i]做更多的假设,只能P[i] = 1,然后再去匹配了。

于是代码如下:

//输入,并处理得到字符串s
int p[1000], mx = 0, id = 0;
memset(p, 0, sizeof(p));
for (i = 1; s[i] != ‘\0‘; i++) {
    p[i] = mx > i ? min(p[2*id-i], mx-i) : 1;
    while (s[i + p[i]] == s[i - p[i]]) p[i]++;
    if (i + p[i] > mx) {
        mx = i + p[i];
        id = i;
    }
}
//找出p[i]中最大的
时间: 2024-10-11 22:07:02

manacher求最长回文子串算法的相关文章

manacher求最长回文子串算法模板

#include <iostream> #include <cstring> #include <cstdlib> #include <stdio.h> #include <string> #include <math.h> #include <stdlib.h> using namespace std; int p[maxn]; char s[maxn]; void manacher(char *s){//时间复杂度O(

O(n) 求最长回文子串的 Manacher 算法

Manacher是一个可以在O(n)的时间内求出一个长度为n的字符串的算法. 以为回文子串有偶数长度,也有奇数长度,分别处理会很不方便. 所以在每两个字符中间插入一个无关字符,如‘#’,这样所有的回文子串都变为奇数长度. 两端在添加不同的无关字符防止匹配时越界. 如: abba 变成 $#a#b#b#a#& 预处理代码: void Prepare() { l = strlen(Str); S[0] = '$'; for (int i = 0; i <= l - 1; i++) { S[(i

Manacher&#39;s algorithm: 最长回文子串算法

Manacher 算法是时间.空间复杂度都为 O(n) 的解决 Longest palindromic substring(最长回文子串)的算法.回文串是中心对称的串,比如 'abcba'.'abccba'.那么最长回文子串顾名思义,就是求一个序列中的子串中,最长的回文串.本文最后用 Python 实现算法,为了方便理解,文中出现的数学式也采用 py 的记法. 在 leetcode 上用时间复杂度 O(n**2).空间复杂度 O(1) 的算法做完这道题之后,搜了一下发现有 O(n) 的算法.可惜

JavaScript算法----给定一个长度为N的串,求最长回文子串。

/* *给定一个长度为N的串,求最长回文子串. */ function returnStr(str){ console.log(str); var arr = [],s = ""; for(var i=0;i<str.length;i++){ s = ""; if(str.charAt(i)==str.charAt(i+1)){ var j=0; while(str.charAt(i+j+1)==str.charAt(i-j)){ s = str.charAt

Manacher求最长回文

#1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在编程的学习道路上一同前进. 这一天,他们遇到了一连串的字符串,于是小Hi就向小Ho提出了那个经典的问题:"小Ho,你能不能分别在这些字符串中找到它们每一个的最长回文子串呢?" 小Ho奇怪的问道:"什么叫做最长回文子串呢?" 小Hi回答道:"一个字符串中连续的一

HDU 4513 吉哥系列故事——完美队形II manacher求最长回文

题目来源:吉哥系列故事--完美队形II 题意:中文 思路:在manacher算法向两边扩展的时候加判断 保证非严格递减就行了 #include <cstdio> #include <cstring> #include <algorithm> using namespace std; const int maxn = 100110; int a[maxn<<1]; int b[maxn<<1]; int dp[maxn<<1]; int

URAL 1297 后缀数组:求最长回文子串

思路:这题下午搞了然后一直WA,后面就看了Discuss,里面有个数组:ABCDEFDCBA,这个我输出ABCD,所以错了. 然后才知道自己写的后缀数组对这个回文子串有bug,然后就不知道怎么改了. 然后看题解,里面都是用RMQ先预处理任意两个后缀的最长公共前缀,因为不太知道这个,所以又看了一下午,嘛嘛-- 然后理解RMQ和后缀一起用的时候才发现其实这里不用RMQ也可以,只要特殊处理一下上面这个没过的例子就行了,哈哈--机智-- 不过那个国家集训队论文里面正解是用RMQ做的,自己还得会和RMQ一

URAL - 1297 Palindrome(后缀数组求最长回文子串)

Description The "U.S. Robots" HQ has just received a rather alarming anonymous letter. It states that the agent from the competing ?Robots Unlimited? has infiltrated into "U.S. Robotics". ?U.S. Robots? security service would have alrea

[hdu3068 最长回文]Manacher算法,O(N)求最长回文子串

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3068 题意:求一个字符串的最长回文子串 思路: 枚举子串的两个端点,根据回文串的定义来判断其是否是回文串并更新答案,复杂度O(N3). 枚举回文串的对称轴i,以及回文半径r,由i和r可确定一个子串,然后暴力判断即可.复杂度O(N2). 在上一步的基础上,改进判断子串是否是回文串的算法.记fi(r)=(bool)以i为对称轴半径为r的子串是回文串,fi(r)的值域为{0, 1},显然fi(r)是关于r