转载:算法杂货铺——分类算法之决策树(Decision tree)

作者:张洋

算法杂货铺——分类算法之决策树(Decision tree)

2010-09-19 16:30 by T2噬菌体, 44346 阅读, 29 评论, 收藏编辑

3.1、摘要

在前面两篇文章中,分别介绍和讨论了朴素贝叶斯分类贝叶斯网络两种分类算法。这两种算法都以贝叶斯定理为基础,可以对分类及决策问题进行概率推断。在这一篇文章中,将讨论另一种被广泛使用的分类算法——决策树(decision tree)。相比贝叶斯算法,决策树的优势在于构造过程不需要任何领域知识或参数设置,因此在实际应用中,对于探测式的知识发现,决策树更加适用。

3.2、决策树引导

通俗来说,决策树分类的思想类似于找对象。现想象一个女孩的母亲要给这个女孩介绍男朋友,于是有了下面的对话:

      女儿:多大年纪了?

      母亲:26。

      女儿:长的帅不帅?

      母亲:挺帅的。

      女儿:收入高不?

      母亲:不算很高,中等情况。

      女儿:是公务员不?

      母亲:是,在税务局上班呢。

      女儿:那好,我去见见。

这个女孩的决策过程就是典型的分类树决策。相当于通过年龄、长相、收入和是否公务员对将男人分为两个类别:见和不见。假设这个女孩对男人的要求是:30岁以下、长相中等以上并且是高收入者或中等以上收入的公务员,那么这个可以用下图表示女孩的决策逻辑(声明:此决策树纯属为了写文章而YY的产物,没有任何根据,也不代表任何女孩的择偶倾向,请各位女同胞莫质问我^_^):

上图完整表达了这个女孩决定是否见一个约会对象的策略,其中绿色节点表示判断条件,橙色节点表示决策结果,箭头表示在一个判断条件在不同情况下的决策路径,图中红色箭头表示了上面例子中女孩的决策过程。

这幅图基本可以算是一颗决策树,说它“基本可以算”是因为图中的判定条件没有量化,如收入高中低等等,还不能算是严格意义上的决策树,如果将所有条件量化,则就变成真正的决策树了。

有了上面直观的认识,我们可以正式定义决策树了:

      决策树(decision tree)是一个树结构(可以是二叉树或非二叉树)。其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别。使用决策树进行决策的过程就是从根节点开始,测试待分类项中相应的特征属性,并按照其值选择输出分支,直到到达叶子节点,将叶子节点存放的类别作为决策结果。

可以看到,决策树的决策过程非常直观,容易被人理解。目前决策树已经成功运用于医学、制造产业、天文学、分支生物学以及商业等诸多领域。知道了决策树的定义以及其应用方法,下面介绍决策树的构造算法。

3.3、决策树的构造

不同于贝叶斯算法,决策树的构造过程不依赖领域知识,它使用属性选择度量来选择将元组最好地划分成不同的类的属性。所谓决策树的构造就是进行属性选择度量确定各个特征属性之间的拓扑结构。

构造决策树的关键步骤是分裂属性。所谓分裂属性就是在某个节点处按照某一特征属性的不同划分构造不同的分支,其目标是让各个分裂子集尽可能地“纯”。尽可能“纯”就是尽量让一个分裂子集中待分类项属于同一类别。分裂属性分为三种不同的情况:

1、属性是离散值且不要求生成二叉决策树。此时用属性的每一个划分作为一个分支。

2、属性是离散值且要求生成二叉决策树。此时使用属性划分的一个子集进行测试,按照“属于此子集”和“不属于此子集”分成两个分支。

3、属性是连续值。此时确定一个值作为分裂点split_point,按照>split_point和<=split_point生成两个分支。

构造决策树的关键性内容是进行属性选择度量,属性选择度量是一种选择分裂准则,是将给定的类标记的训练集合的数据划分D“最好”地分成个体类的启发式方法,它决定了拓扑结构及分裂点split_point的选择。

属性选择度量算法有很多,一般使用自顶向下递归分治法,并采用不回溯的贪心策略。这里介绍ID3C4.5两种常用算法。

3.3.1、ID3算法

信息论知识中我们直到,期望信息越小,信息增益越大,从而纯度越高。所以ID3算法的核心思想就是以信息增益度量属性选择,选择分裂后信息增益最大的属性进行分裂。下面先定义几个要用到的概念。

设D为用类别对训练元组进行的划分,则D的(entropy)表示为:

其中pi表示第i个类别在整个训练元组中出现的概率,可以用属于此类别元素的数量除以训练元组元素总数量作为估计。熵的实际意义表示是D中元组的类标号所需要的平均信息量。

现在我们假设将训练元组D按属性A进行划分,则A对D划分的期望信息为:

而信息增益即为两者的差值:

ID3算法就是在每次需要分裂时,计算每个属性的增益率,然后选择增益率最大的属性进行分裂。下面我们继续用SNS社区中不真实账号检测的例子说明如何使用ID3算法构造决策树。为了简单起见,我们假设训练集合包含10个元素:

其中s、m和l分别表示小、中和大。

设L、F、H和R表示日志密度、好友密度、是否使用真实头像和账号是否真实,下面计算各属性的信息增益。

因此日志密度的信息增益是0.276。

用同样方法得到H和F的信息增益分别为0.033和0.553。

因为F具有最大的信息增益,所以第一次分裂选择F为分裂属性,分裂后的结果如下图表示:

在上图的基础上,再递归使用这个方法计算子节点的分裂属性,最终就可以得到整个决策树。

上面为了简便,将特征属性离散化了,其实日志密度和好友密度都是连续的属性。对于特征属性为连续值,可以如此使用ID3算法:

先将D中元素按照特征属性排序,则每两个相邻元素的中间点可以看做潜在分裂点,从第一个潜在分裂点开始,分裂D并计算两个集合的期望信息,具有最小期望信息的点称为这个属性的最佳分裂点,其信息期望作为此属性的信息期望。

3.3.2、C4.5算法

ID3算法存在一个问题,就是偏向于多值属性,例如,如果存在唯一标识属性ID,则ID3会选择它作为分裂属性,这样虽然使得划分充分纯净,但这种划分对分类几乎毫无用处。ID3的后继算法C4.5使用增益率(gain ratio)的信息增益扩充,试图克服这个偏倚。

C4.5算法首先定义了“分裂信息”,其定义可以表示成:

其中各符号意义与ID3算法相同,然后,增益率被定义为:

C4.5选择具有最大增益率的属性作为分裂属性,其具体应用与ID3类似,不再赘述。

3.4、关于决策树的几点补充说明

3.4.1、如果属性用完了怎么办

在决策树构造过程中可能会出现这种情况:所有属性都作为分裂属性用光了,但有的子集还不是纯净集,即集合内的元素不属于同一类别。在这种情况下,由于没有更多信息可以使用了,一般对这些子集进行“多数表决”,即使用此子集中出现次数最多的类别作为此节点类别,然后将此节点作为叶子节点。

3.4.2、关于剪枝

在实际构造决策树时,通常要进行剪枝,这时为了处理由于数据中的噪声和离群点导致的过分拟合问题。剪枝有两种:

先剪枝——在构造过程中,当某个节点满足剪枝条件,则直接停止此分支的构造。

后剪枝——先构造完成完整的决策树,再通过某些条件遍历树进行剪枝。

关于剪枝的具体算法这里不再详述,有兴趣的可以参考相关文献。

时间: 2024-08-06 07:35:40

转载:算法杂货铺——分类算法之决策树(Decision tree)的相关文章

算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification)

算法杂货铺——分类算法之朴素贝叶斯分类(Naive Bayesian classification) 0.写在前面的话 我个人一直很喜欢算法一类的东西,在我看来算法是人类智慧的精华,其中蕴含着无与伦比的美感.而每次将学过的算法应用到实际中,并解决了实际问题后,那种快感更是我在其它地方体会不到的. 一直想写关于算法的博文,也曾写过零散的两篇,但也许是相比于工程性文章来说太小众,并没有引起大家的兴趣.最近面临毕业找工作,为了能给自己增加筹码,决定再次复习算法方面的知识,我决定趁这个机会,写一系列关于

机器学习算法实践:决策树 (Decision Tree)(转载)

前言 最近打算系统学习下机器学习的基础算法,避免眼高手低,决定把常用的机器学习基础算法都实现一遍以便加深印象.本文为这系列博客的第一篇,关于决策树(Decision Tree)的算法实现,文中我将对决策树种涉及到的 算法进行总结并附上自己相关的实现代码.所有算法代码以及用于相应模型的训练的数据都会放到GitHub上(https://github.com/PytLab/MLBox). 本文中我将一步步通过MLiA的隐形眼镜处方数集构建决策树并使用Graphviz将决策树可视化. 决策树学习 决策树

【机器学习算法-python实现】决策树-Decision tree(1) 信息熵划分数据集

(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景 决策书算法是一种逼近离散数值的分类算法,思路比較简单,并且准确率较高.国际权威的学术组织,数据挖掘国际会议ICDM (the IEEE International Conference on Data Mining)在2006年12月评选出了数据挖掘领域的十大经典算法中,C4.5算法排名第一.C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法. 算法的主要思想就是将数据集依照特

【机器学习算法-python实现】决策树-Decision tree(2) 决策树的实现

(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景 接着上一节说,没看到请先看一下上一节关于数据集的划分数据集划分.如今我们得到了每一个特征值得信息熵增益,我们依照信息熵增益的从大到校的顺序,安排排列为二叉树的节点.数据集和二叉树的图见下. (二叉树的图是用python的matplotlib库画出来的) 数据集: 决策树: 2.代码实现部分 由于上一节,我们通过chooseBestFeatureToSplit函数已经能够确定当前数据集中的信息熵最大的

机器学习入门 - 1. 介绍与决策树(decision tree)

机器学习(Machine Learning) 介绍与决策树(Decision Tree) 机器学习入门系列 是 个人学习过程中的一些记录与心得.其主要以要点形式呈现,简洁明了. 1.什么是机器学习? 一个比较概括的理解是: 根据现有的数据,预测未来 2.核心思想 : Generalization 可以理解为,归纳.概括.就像是人的学习一样,找出一件事物与与一件事物的联系 3.归纳性的机器学习(Inductive machine learning) 其核心思想是使用训练数据,并从其中摸索出一套适用

机器学习(二)之决策树(Decision Tree)

Contents 理论基础 熵 信息增益 算法实现 Python 模型的保存与读取 总结 理论基础 决策树(Decision Tree, DT):决策树是一种基本的分类与回归方法.由于模型呈树形结构,可以看做是if-then规则的集合,具有一定的可读性,可视化效果好. 决策树的建立包括3个步骤:特征选择.决策树生成和决策树的修剪. 模型的建立实际上就是通过某种方式,递归地选择最优的特征,并通过数据的划分,将无序的数据变得有序. 因此,在构造决策树时,第一个需要解决的问题就是如何确定出哪个特征在划

数据挖掘-决策树 Decision tree

数据挖掘-决策树 Decision tree 目录 数据挖掘-决策树 Decision tree 1. 决策树概述 1.1 决策树介绍 1.1.1 决策树定义 1.1.2 本质 1.1.3 决策树的组成 1.1.4 决策树的分类 1.1.5 决策过程 1.2 决策树的优化 1.2.1 过拟合 1.3.1 剪枝 2. 理论基础 2.1 香农理论 2.1.1 信息量 2.1.2 平均信息量/信息熵 2.1.3 条件熵 2.1.4 信息增益(Information gain) 2.1.5 信息增益率

决策树Decision Tree 及实现

Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报  分类: Data Mining(25)  Python(24)  Machine Learning(46)  版权声明:本文为博主原创文章,未经博主允许不得转载. 本文基于python逐步实现Decision Tree(决策树),分为以下几个步骤: 加载数据集 熵的计算 根据最佳分割feature进行数据分割 根据最大信息增益选择最佳分割feat

机器学习分类实例——SVM(修改)/Decision Tree/Naive Bayes

机器学习分类实例--SVM(修改)/Decision Tree/Naive Bayes 20180427-28笔记.30总结 已经5月了,毕设告一段落了,该准备论文了.前天开会老师说,希望我以后做关于语义分析那一块内容,会议期间还讨论了学姐的知识图谱的知识推理内容,感觉也挺有趣的,但是感觉应该会比较复杂.有时间的话希望对这块了解一下.其实吧,具体怎么展示我还是不太清楚... 大概就是图表那个样子.我先做一个出来,让老师看看,两个礼拜写论文.24/25答辩,6月就可以去浪哈哈哈哈哈哈. 一.工作