Netty源码分析第3章(客户端接入流程)---->第5节: 监听读事件

Netty源码分析第三章: 客户端接入流程

第五节: 监听读事件

我们回到AbstractUnsafe的register0()方法:

private void register0(ChannelPromise promise) {
    try {
        //省略代码
        //做实际的注册
        doRegister();
        neverRegistered = false;
        registered = true;
        //触发事件
        pipeline.invokeHandlerAddedIfNeeded();
        safeSetSuccess(promise);
        //触发注册成功事件
        pipeline.fireChannelRegistered();
        if (isActive()) {
            if (firstRegistration) {
                //传播active事件(4)
                pipeline.fireChannelActive();
            } else if (config().isAutoRead()) {
                beginRead();
            }
        }
    } catch (Throwable t) {
        //省略代码
    }
}

doRegister()做完实际的注册之后, 会走到if (isActive())这个判断, 因为这个时候链路已经完成, 所以这里是true, 默认判断条件if (firstRegistration)也为true, 所以这里会走到pipeline.fireChannelActive()这一步

有关pipeline我们会在下一章进行详细分析, 这里我们只需要知道, 最后会流转到AbstractUnsafe的beginRead()方法

跟到beginRead()方法:

public final void beginRead() {
    assertEventLoop();
    if (!isActive()) {
        return;
    }
    try {
        doBeginRead();
    } catch (final Exception e) {
        //代码省略
    }
}

这块代码同样我们也不陌生, 因为我们分析NioServerSocketChannel也分析过了这一步

我们继续跟到doBeginRead():

protected void doBeginRead() throws Exception {
    //拿到selectionKey
    final SelectionKey selectionKey = this.selectionKey;
    if (!selectionKey.isValid()) {
        return;
    }
    readPending = true;
    //获得感兴趣的事件
    final int interestOps = selectionKey.interestOps();
    //判断是不是对任何事件都不监听
    if ((interestOps & readInterestOp) == 0) {
        //此条件成立
        //将之前的accept事件注册, readInterest代表可以读取一个新连接的意思
        selectionKey.interestOps(interestOps | readInterestOp);
    }
}

这段代码相信大家会比较熟悉, 因为我们服务端channel注册完之后也走到了这里

因为我们在创建NioSocketChannel的时候初始化的是read事件, selectionKey是channel在注册时候返回的key, 所以selectionKey.interestOps(interestOps | readInterestOp)这一步, 会将当前channel的读事件注册到selector中去

注册完成之后, NioEventLoop就可以轮询当前channel的读事件了

以上就是NioSocketChannel注册监听事件的流程

第三章总结

本章学习了有关客户端接入, NioSocketChannel的创建, 注册等相关操作, 并且涉及到了上一小节剖析的eventLoop的相关逻辑, 同学们可以将相关的流程通过debug的方式走一遍以加深印象

原文地址:https://www.cnblogs.com/xiangnan6122/p/10204030.html

时间: 2024-12-25 09:56:14

Netty源码分析第3章(客户端接入流程)---->第5节: 监听读事件的相关文章

Netty源码分析第3章(客户端接入流程)---->第4节: NioSocketChannel注册到selector

Netty源码分析第三章: 客户端接入流程 第四节: NioSocketChannel注册到selector 我们回到最初的NioMessageUnsafe的read()方法: public void read() { //必须是NioEventLoop方法调用的, 不能通过外部线程调用 assert eventLoop().inEventLoop(); //服务端channel的config final ChannelConfig config = config(); //服务端channel

Netty源码分析第3章(客户端接入流程)---->第3节: NioSocketChannel的创建

Netty源码分析第三章: 客户端接入流程 第三节: NioSocketChannel的创建 回到上一小结的read()方法: public void read() { //必须是NioEventLoop方法调用的, 不能通过外部线程调用 assert eventLoop().inEventLoop(); //服务端channel的config final ChannelConfig config = config(); //服务端channel的pipeline final ChannelPi

Netty源码分析 (六)----- 客户端接入accept过程

通读本文,你会了解到1.netty如何接受新的请求2.netty如何给新请求分配reactor线程3.netty如何给每个新连接增加ChannelHandler netty中的reactor线程 netty中最核心的东西莫过于两种类型的reactor线程,可以看作netty中两种类型的发动机,驱动着netty整个框架的运转 一种类型的reactor线程是boos线程组,专门用来接受新的连接,然后封装成channel对象扔给worker线程组:还有一种类型的reactor线程是worker线程组,

Netty源码分析第4章(pipeline)---->第7节: 前章节内容回顾

Netty源码分析第四章: pipeline 第七节: 前章节内容回顾 我们在第一章和第三章中, 遗留了很多有关事件传输的相关逻辑, 这里带大家一一回顾 首先看两个问题: 1.在客户端接入的时候, NioMessageUnsafe的read方法中pipeline.fireChannelRead(readBuf.get(i))为什么会调用到ServerBootstrap的内部类ServerBootstrapAcceptor中的channelRead()方法 2.客户端handler是什么时候被添加

Netty源码分析第6章(解码器)---->第1节: ByteToMessageDecoder

Netty源码分析第六章: 解码器 概述: 在我们上一个章节遗留过一个问题, 就是如果Server在读取客户端的数据的时候, 如果一次读取不完整, 就触发channelRead事件, 那么Netty是如何处理这类问题的, 在这一章中, 会对此做详细剖析 之前的章节我们学习过pipeline, 事件在pipeline中传递, handler可以将事件截取并对其处理, 而之后剖析的编解码器, 其实就是一个handler, 截取byteBuf中的字节, 然后组建成业务需要的数据进行继续传播 编码器,

Netty源码分析第4章(pipeline)---->第4节: 传播inbound事件

Netty源码分析第四章: pipeline 第四节: 传播inbound事件 有关于inbound事件, 在概述中做过简单的介绍, 就是以自己为基准, 流向自己的事件, 比如最常见的channelRead事件, 就是对方发来数据流的所触发的事件, 己方要对这些数据进行处理, 这一小节, 以激活channelRead为例讲解有关inbound事件的处理流程 在业务代码中, 我们自己的handler往往会通过重写channelRead方法来处理对方发来的数据, 那么对方发来的数据是如何走到chan

Netty源码分析第5章(ByteBuf)---->第1节: AbstractByteBuf

Netty源码分析第五章: ByteBuf 概述: 熟悉Nio的小伙伴应该对jdk底层byteBuffer不会陌生, 也就是字节缓冲区, 主要用于对网络底层io进行读写, 当channel中有数据时, 将channel中的数据读取到字节缓冲区, 当要往对方写数据的时候, 将字节缓冲区的数据写到channel中 但是jdk的byteBuffer是使用起来有诸多不便, 比如只有一个标记位置的指针position, 在进行读写操作时要频繁的通过flip()方法进行指针位置的移动, 极易出错, 并且by

Netty源码分析第5章(ByteBuf)---->第3节: 内存分配器

Netty源码分析第五章: ByteBuf 第三节: 内存分配器 内存分配器, 顾明思议就是分配内存的工具, 在netty中, 内存分配器的顶级抽象是接口ByteBufAllocator, 里面定义了有关内存分配的相关api 抽象类AbstractByteBufAllocator实现了ByteBufAllocator接口, 并且实现了其大部分功能 和AbstractByteBuf一样, AbstractByteBufAllocator也实现了缓冲区分配的骨架逻辑, 剩余的交给其子类 以其中的分配

Netty源码分析第5章(ByteBuf)---->第4节: PooledByteBufAllocator简述

Netty源码分析第五章: ByteBuf 第四节: PooledByteBufAllocator简述 上一小节简单介绍了ByteBufAllocator以及其子类UnPooledByteBufAllocator的缓冲区分类的逻辑, 这一小节开始带大家剖析更为复杂的PooledByteBufAllocator, 我们知道PooledByteBufAllocator是通过自己取一块连续的内存进行ByteBuf的封装, 所以这里更为复杂, 在这一小节简单讲解有关PooledByteBufAlloca