The perception and large margin classifiers

假设样例按照到来的先后顺序依次定义为为样本特征,为类别标签。我们的任务是到来一个样例x,给出其类别结果y的预测值,之后我们会看到y的真实值,然后根据真实值来重新调整模型参数,整个过程是重复迭代的过程,直到所有的样例完成。这么看来,我们也可以将原来用于批量学习的样例拿来作为在线学习的样例。在在线学习中我们主要关注在整个预测过程中预测错误的样例数。

原文地址:https://www.cnblogs.com/wzdLY/p/10094730.html

时间: 2024-10-22 03:22:19

The perception and large margin classifiers的相关文章

基于Caffe的Large Margin Softmax Loss的实现(中)

小喵的唠叨话:前一篇博客,我们做完了L-Softmax的准备工作.而这一章,我们开始进行前馈的研究. 小喵博客: http://miaoerduo.com 博客原文:  http://www.miaoerduo.com/deep-learning/基于caffe的large-margin-softmax-loss的实现(中).html 四.前馈 还记得上一篇博客,小喵给出的三个公式吗?不记得也没关系. 这次,我们要一点一点的通过代码来实现这些公式.小喵主要是GPU上实现前后馈的代码,因为这个层只

基于Caffe的Large Margin Softmax Loss的实现(上)

小喵的唠叨话:在写完上一次的博客之后,已经过去了2个月的时间,小喵在此期间,做了大量的实验工作,最终在使用的DeepID2的方法之后,取得了很不错的结果.这次呢,主要讲述一个比较新的论文中的方法,L-Softmax,据说单model在LFW上能达到98.71%的等错误率.更重要的是,小喵觉得这个方法和DeepID2并不冲突,如果二者可以互补,或许单model达到99%+将不是梦想. 再次推销一下~ 小喵的博客网址是: http://www.miaoerduo.com 博客原文:  http://

Large Margin DAGs for Multiclass Classification

Abstract We present a new learning architecture: the Decision Directed Acyclic Graph (DDAG), which is used to combine many two-class classifiers into a multiclass classifiers. For an -class problem, the DDAG contains classifiers, one for each pair of

【转载】在线学习(Online Learning)

在线学习(Online Learning) 原题目叫做The perception and large margin classifiers,其实探讨的是在线学习.这里将题目换了换.以前讨论的都是批量学习(batch learning),就是给了一堆样例后,在样例上学习出假设函数h.而在线学习就是要根据新来的样例,边学习,边给出结果. 假设样例按照到来的先后顺序依次定义为.X为样本特征,y为类别标签.我们的任务是到来一个样例x,给出其类别结果y的预测值,之后我们会看到y的真实值,然后根据真实值来

机器学习------资源分享

=======================国内==================== 之前自己一直想总结一下国内搞机器学习和数据挖掘的大牛,但是自己太懒了.所以没搞… 最近看到了下面转载的这篇博文,感觉总结的比较全面了. 个人认为,但从整体研究实力来说,机器学习和数据挖掘方向国内最强的地方还是在MSRA, 那边的相关研究小组太多,很多方向都能和数据挖掘扯上边.这里我再补充几个相关研究方向 的年轻老师和学者吧. 蔡登:http://www.cad.zju.edu.cn/home/dengca

SVM3 Soft Margin SVM

之前分为两部分讨论过SVM.第一部分讨论了线性SVM,并且针对线性不可分的数据,把原始的问题转化为对偶的SVM求解.http://www.cnblogs.com/futurehau/p/6143178.html 然后考虑到特征数量特别特别多的时候,引入核函数的求解.http://www.cnblogs.com/futurehau/p/6149558.html 但是,之前也遗留了一个问题,就是比如高斯核函数或其他的核函数,虽然large margin能够在一定程度上防止过拟合,但是加入你的核函数太

{ICIP2014}{收录论文列表}

This article come from HEREARS-L1: Learning Tuesday 10:30–12:30; Oral Session; Room: Leonard de Vinci 10:30  ARS-L1.1—GROUP STRUCTURED DIRTY DICTIONARY LEARNING FOR CLASSIFICATION Yuanming Suo, Minh Dao, Trac Tran, Johns Hopkins University, USA; Hojj

ECCV 2014 Results (16 Jun, 2014) 结果已出

Accepted Papers     Title Primary Subject Area ID 3D computer vision 93 UPnP: An optimal O(n) solution to the absolute pose problem with universal applicability 128 Video Registration to SfM Models 168 Image-based 4-d Modeling Using 3-d Change Detect

SVM与LR的比较

两种方法都是常见的分类算法,从目标函数来看,区别在于逻辑回归采用的是logistical loss,svm采用的是hinge loss.这两个损失函数的目的都是增加对分类影响较大的数据点的权重,减少与分类关系较小的数据点的权重.SVM的处理方法是只考虑support vectors,也就是和分类最相关的少数点,去学习分类器.而逻辑回归通过非线性映射,大大减小了离分类平面较远的点的权重,相对提升了与分类最相关的数据点的权重.两者的根本目的都是一样的.此外,根据需要,两个方法都可以增加不同的正则化项