ufldl学习笔记与编程作业:Debugging: Gradient Checking(梯度检测)

ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践。

在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学dl。

于是最近就开始搞这个了,教程加上matlab编程,就是完美啊。

新教程的地址是:http://ufldl.stanford.edu/tutorial/

本节学习链接:http://ufldl.stanford.edu/tutorial/supervised/DebuggingGradientChecking/

所谓梯度,可以理解为高中所学的导数,斜率。

检测就是利用极限的思想,取无穷短的距离,来算两点的斜率。

当然无穷短是理想,一般取10?4

这节的编程作业是检测之前的线性回归和逻辑回归的梯度。

我直接用了提供的ex1/grad_check.m

来检测。

%
%This exercise uses a data from the UCI repository:
% Bache, K. & Lichman, M. (2013). UCI Machine Learning Repository
% http://archive.ics.uci.edu/ml
% Irvine, CA: University of California, School of Information and Computer Science.
%
%Data created by:
% Harrison, D. and Rubinfeld, D.L.
% ''Hedonic prices and the demand for clean air''
% J. Environ. Economics & Management, vol.5, 81-102, 1978.
%
addpath "../common"
addpath "../common/minFunc_2012/minFunc"
addpath "../common/minFunc_2012/minFunc/compiled"

% Load housing data from file.
data = load('housing.data');
data=data'; % put examples in columns 坑爹啊,这里转置了,看了半天

% Include a row of 1s as an additional intercept feature.
data = [ ones(1,size(data,2)); data ];

% Shuffle examples.
data = data(:, randperm(size(data,2)));

% Split into train and test sets
% The last row of 'data' is the median home price.
train.X = data(1:end-1,1:400);
train.y = data(end,1:400);

test.X = data(1:end-1,401:end);
test.y = data(end,401:end);

m=size(train.X,2);
n=size(train.X,1);

% Initialize the coefficient vector theta to random values.
theta = rand(n,1);

% Run the minFunc optimizer with linear_regression.m as the objective.
%
% TODO:  Implement the linear regression objective and gradient computations
% in linear_regression.m
%
tic;

%options = struct('MaxIter', 200);
%theta = minFunc(@linear_regression, theta, options, train.X, train.y);
%fprintf('Optimization took %f seconds.\n', toc);

grad_check(@linear_regression, theta, 200, train.X, train.y);

主要就是最后一行调用grad_check。前面都是load数据。

第三列是梯度误差,第四列是linear_regression函数求的梯度,第五列是估算的梯度。

看起来,梯度误差挺大的。但是不影响梯度的数量级别。

还有,我用的是Octave,貌似没有randsample函数。貌似有人说只有旧版的matlab才有这函数,何况我这个连matlab都不是。

幸好这里可以用randperm来代替。

grad_check.m代码修改如下:

function average_error = grad_check(fun, theta0, num_checks, varargin)

  delta=1e-3;
  sum_error=0;

  fprintf(' Iter       i             err');
  fprintf('           g_est               g               f\n')

  for i=1:num_checks
    T = theta0;
    %j = randsample(numel(T),1);
    j = randperm(numel(T),1);
    T0=T; T0(j) = T0(j)-delta;
    T1=T; T1(j) = T1(j)+delta;

    [f,g] = fun(T, varargin{:});
    f0 = fun(T0, varargin{:});
    f1 = fun(T1, varargin{:});

    g_est = (f1-f0) / (2*delta);
    error = abs(g(j) - g_est);

    fprintf('% 5d  % 6d % 15g % 15f % 15f % 15f\n', ...
            i,j,error,g(j),g_est,f);

    sum_error = sum_error + error;
  end

  average=sum_error/num_checks;

本文作者:linger

本文链接:http://blog.csdn.net/lingerlanlan/article/details/38390955

ufldl学习笔记与编程作业:Debugging: Gradient Checking(梯度检测),布布扣,bubuko.com

时间: 2024-10-04 18:13:08

ufldl学习笔记与编程作业:Debugging: Gradient Checking(梯度检测)的相关文章

ufldl学习笔记与编程作业:Softmax Regression(vectorization加速)

ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学dl. 于是最近就开始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节是对ufldl学习笔记与编程作业:Softmax Regression(softmax回归)版本的改进. 哈哈,把向量化的写法给写出来了,尼玛好快啊.只需要2分钟,2

ufldl学习笔记与编程作业:Logistic Regression(逻辑回归)

ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学dl. 于是最近就开始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习链接:http://ufldl.stanford.edu/tutorial/supervised/LogisticRegression/ 有了线性回归的基础再来学

ufldl学习笔记和编程作业:Softmax Regression(softmax回报)

ufldl学习笔记与编程作业:Softmax Regression(softmax回归) ufldl出了新教程.感觉比之前的好,从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其它机器学习的算法,能够直接来学dl. 于是近期就開始搞这个了.教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习链接:http://ufldl.stanford.edu/tutoria

ufldl学习笔记与编程作业:Multi-Layer Neural Network(多层神经网络+识别手写体编程)

ufldl学习笔记与编程作业:Multi-Layer Neural Network(多层神经网络+识别手写体编程) ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学dl. 于是最近就开始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习地址:http://ufldl.stanfor

ufldl学习笔记与编程作业:Softmax Regression(softmax回归)

ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学dl. 于是最近就开始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习链接:http://ufldl.stanford.edu/tutorial/supervised/SoftmaxRegression/ softmax回归其实是逻

ufldl学习笔记与编程作业:Vectorization(向量化/矢量化)

ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学dl. 于是最近就开始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习链接:http://ufldl.stanford.edu/tutorial/supervised/Vectorization/ 什么是向量化?怎么样向量化? 简单

ufldl学习笔记与编程作业:Feature Extraction Using Convolution,Pooling(卷积和池化抽取特征)

ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学dl. 于是最近就开始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 学习链接: http://ufldl.stanford.edu/tutorial/supervised/FeatureExtractionUsingConvolution

ufldl学习笔记与编程作业:Convolutional Neural Network(卷积神经网络)

ufldl出了新教程,感觉比之前的好,从基础讲起,系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说,不必深究其他机器学习的算法,可以直接来学dl. 于是最近就开始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习地址:http://ufldl.stanford.edu/tutorial/supervised/ConvolutionalNeuralNetwork/ 一直没更

ufldl学习笔记与编程作业:Linear Regression(线性回归)

ufldl出了新教程,感觉比之前的好.从基础讲起.系统清晰,又有编程实践. 在deep learning高质量群里面听一些前辈说.不必深究其它机器学习的算法.能够直接来学dl. 于是近期就開始搞这个了,教程加上matlab编程,就是完美啊. 新教程的地址是:http://ufldl.stanford.edu/tutorial/ 本节学习链接:http://ufldl.stanford.edu/tutorial/supervised/LinearRegression/ 从一个最简单的线性回归,能够