背包问题(南阳oj106)(贪心)

背包问题

时间限制:3000 ms  |  内存限制:65535 KB

难度:3

描述
现在有很多物品(它们是可以分割的),我们知道它们每个物品的单位重量的价值v和重量w(1<=v,w<=10);如果给你一个背包它能容纳的重量为m(10<=m<=20),你所要做的就是把物品装到背包里,使背包里的物品的价值总和最大。

输入
第一行输入一个正整数n(1<=n<=5),表示有n组测试数据;

随后有n测试数据,每组测试数据的第一行有两个正整数s,m(1<=s<=10);s表示有s个物品。接下来的s行每行有两个正整数v,w。

输出
输出每组测试数据中背包内的物品的价值和,每次输出占一行。
样例输入
1
3 15
5 10
2 8
3 9
样例输出
65
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
struct st
{
	int a,b;
}data[20];
int cmp(st x,st y)
{
	return x.a>y.a;
}
int main()
{
	int i,j,v,w,test;
	int sum,k;
	scanf("%d",&test);
	while(test--)
	{
		scanf("%d %d",&v,&w);
		for(i=1;i<=v;i++)
		{
			scanf("%d %d",&data[i].a,&data[i].b);
		}
		sort(data+1,data+v+1,cmp);
		for(i=1,sum=0;i<=v;i++)
		{
			k=data[i].a*data[i].b;
			if(w-data[i].b>=0)
			{
				sum+=k;
				w-=data[i].b;
			}
			else
			{
				sum+=w*data[i].a;
				break;
			}
		}
		printf("%d\n",sum);
	}
	return 0;
} 

时间: 2024-11-02 03:05:24

背包问题(南阳oj106)(贪心)的相关文章

南阳oj106 背包问题

描述 现在有很多物品(它们是可以分割的),我们知道它们每个物品的单位重量的价值v和重量w(1<=v,w<=10):如果给你一个背包它能容纳的重量为m(10<=m<=20),你所要做的就是把物品装到背包里,使背包里的物品的价值总和最大. 输入 第一行输入一个正整数n(1<=n<=5),表示有n组测试数据: 随后有n测试数据,每组测试数据的第一行有两个正整数s,m(1<=s<=10);s表示有s个物品.接下来的s行每行有两个正整数v,w. 输出 输出每组测试数据

贪心算法之背包问题

贪婪算法的基本思想:通过一系列步骤来构造问题的解,每一步都是对已构造的部分解的一个扩展,直到获得问题的完整解. 贪婪算法中,每一步“贪婪地” 选择最好的部分解,但不顾及这样选择对整体的影响(局部最优),因此得到的全局解不一定最好的解,但对许多问题它能产生整体最优解. 具体算法描述: public static void Greedy()        {            float cu = c;            int temp = 0;            int i = 0;

[C++] 贪心算法之活动安排、背包问题

一.贪心算法的基本思想 在求解过程中,依据某种贪心标准,从问题的初始状态出发,直接去求每一步的最优解,通过若干次的贪心选择,最终得出整个问题的最优解. 从贪心算法的定义可以看出,贪心算法不是从整体上考虑问题,它所做出的选择只是在某种意义上的局部最优解,而由问题自身的特性决定了该题运用贪心算法可以得到最优解.如果一个问题可以同时用几种方法解决,贪心算法应该是最好的选择之一. 二.贪心算法的基本要素 (1)最优子结构性质 (2)贪心选择性质(局部最优选择) 三.贪心算法实例 1.活动安排 设有n个活

部分背包问题的贪心算法正确性证明

一,部分背包问题介绍 首先介绍下0-1背包问题.假设一共有N件物品,第 i 件物品的价值为 Vi ,重量为Wi,一个小偷有一个最多只能装下重量为W的背包,他希望带走的物品越有价值越好,请问:他应该选择哪些物品? 0-1背包问题的特点是:对于某件(更适合的说法是:某类)物品,要么被带走(选择了它),要么不被带走(没有选择它),不存在只带走一部分的情况. 而部分背包问题则是:可以带走一部分.即,部分背包问题可带走的物品 是可以 无限细分的.(连续与离散的区别) 可以把0-1背包问题中的物品想象的一个

背包问题的贪心算法

1. 贪心算法的基本原理: 贪心算法总是作出在当前看来最好的选择.也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择.当然,希望贪心算法得到的最终结果也是整体最优的.虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解.如单源最短路经问题,最小生成树问题等.在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似.? 贪心算法求解的问题一般具有两个重要性质:贪心选择性质和最优子结构性质. (1)所谓贪心选择性质是指所求问题的

零基础学贪心算法

本文在写作过程中参考了大量资料,不能一一列举,还请见谅.贪心算法的定义:贪心算法是指在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,只做出在某种意义上的局部最优解.贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关.解题的一般步骤是:1.建立数学模型来描述问题:2.把求解的问题分成若干个子问题:3.对每一子问题求解,得到子问题的局部最优解:4.把子问题的局部最优

【算法导论】0-1背包问题

一.0-1背包问题描述: 已知:小偷在店里偷东西,小偷只带了一个最大承重为W的背包,商店里有N件商品,第i件商品的重量是weight[i],价钱是value[i]. 限制:每种商品只有一件,可以选择拿或者不拿,不能分割,不能只拿一件商品的一部分(所以叫做0-1,0即不拿,1则整个拿走,且一种商品有且只有一件可供拿走) 问题:在不超过背包最大承重的情况下,最多能拿走多少钱的商品. 算导上与0-1背包问题对应的是分数背包问题,分数背包问题中的物品是可以取一部分的,就是说可以拆分的,不像0-1背包中,

贪心选择算法

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 } p.p2 { margin: 0.0px 0.0px 2.0px 0.0px; font: 14.0px ".PingFang SC"; color: #454545 } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helv

0-1背包的动态规划算法,部分背包的贪心算法和DP算法------算法导论

一.问题描述 0-1背包问题,部分背包问题.分别实现0-1背包的DP算法,部分背包的贪心算法和DP算法. 二.算法原理 (1)0-1背包的DP算法 0-1背包问题:有n件物品和一个容量为W的背包.第i件物品的重量是w[i],价值是v[i].求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大.其中每种物品只有一件,可以选择放或者不放. 最优子结构性质:对于0-1问题,考虑重量至多W的最值钱的一包东西.如果去掉其中一个物品j,余下的必是除j以外的n-1件物品中,可以带走的重量