思路:找规律发现这个数是斐波那契第2*k+3项-1,数据较大矩阵快速幂搞定.
快速幂入门第一题QAQ
#include <stdio.h> #include <stdlib.h> #include <cmath> #include <string.h> #include <iostream> #include <algorithm> #include <queue> #include <vector> #include <string> #include <ctype.h> //****************************************************** #define lrt (rt*2) #define rrt (rt*2+1) #define LL long long #define inf 0x3f3f3f3f #define pi acos(-1.0) #define exp 1e-8 //*************************************************** #define eps 1e-8 #define inf 0x3f3f3f3f #define INF 2e18 #define LL long long #define ULL unsigned long long #define PI acos(-1.0) #define pb push_back #define mk make_pair #define all(a) a.begin(),a.end() #define rall(a) a.rbegin(),a.rend() #define SQR(a) ((a)*(a)) #define Unique(a) sort(all(a)),a.erase(unique(all(a)),a.end()) #define min3(a,b,c) min(a,min(b,c)) #define max3(a,b,c) max(a,max(b,c)) #define min4(a,b,c,d) min(min(a,b),min(c,d)) #define max4(a,b,c,d) max(max(a,b),max(c,d)) #define max5(a,b,c,d,e) max(max3(a,b,c),max(d,e)) #define min5(a,b,c,d,e) min(min3(a,b,c),min(d,e)) #define Iterator(a) __typeof__(a.begin()) #define rIterator(a) __typeof__(a.rbegin()) //#define FastRead ios_base::sync_with_stdio(0);cin.tie(0) #define FastRead ios::sync_with_stdio(false); #define CasePrint pc(‘C‘); pc(‘a‘); pc(‘s‘); pc(‘e‘); pc(‘ ‘); write(qq++,false); pc(‘:‘); pc(‘ ‘) #define vi vector <int> #define vL vector <LL> #define For(I,A,B) for(int I = (A); I < (B); ++I) #define FOR(I,A,B) for(int I = (A); I <= (B); ++I) #define rFor(I,A,B) for(int I = (A); I >= (B); --I) #define Rep(I,N) For(I,0,N) #define REP(I,N) FOR(I,1,N) using namespace std; const int maxn=1e5+10; #define mod 998244353 struct Matirx { int h,w; LL a[5][5]; }ori,res,it; LL f[5]={0,1,1}; void iint(){ it.w=2;it.h=1;it.a[1][1]=1;it.a[1][2]=0; res.w=res.h=2; memset(res.a,0,sizeof(res.a)); res.a[1][1]=res.a[2][2]=1; ori.w=ori.h=2; memset(ori.a,0,sizeof(ori.a)); ori.a[1][1]= 1;ori.a[1][2]= 1; ori.a[2][1]= 1;ori.a[2][2]= 0; } Matirx multy(Matirx x,Matirx y){ Matirx z;z.w=y.w;z.h=x.h; memset(z.a,0,sizeof(z.a)); for(int i=1;i<=x.h;i++){ for(int k=1;k<=x.w;k++){ if(x.a[i][k]==0) continue; for(int j=1;j<=y.w;j++) z.a[i][j]=(z.a[i][j]+x.a[i][k]*y.a[k][j]%mod)%mod; } } return z; } LL Matirx_mod(LL n){ if(n<2) return f[n]; else n-=1; while(n){ if(n&1) res=multy(ori,res); ori=multy(ori,ori); n>>=1; } res=multy(it,res); return res.a[1][1]%mod; } int main() { LL n; while(scanf("%I64d",&n)!=EOF) { iint(); printf("%I64d\n",Matirx_mod(2*n+3)-1); } return 0; }
时间: 2024-10-14 02:12:33