POJ 3009 Curling 2.0

Curling 2.0

Time Limit: 1000ms

Memory Limit: 65536KB

This problem will be judged on PKU. Original ID: 3009
64-bit integer IO format: %lld      Java class name: Main

On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is played on an ice game board on which a square mesh is marked. They use only a single stone. The purpose of the game is to lead the stone from the start to the goal with the minimum number of moves.

Fig. 1 shows an example of a game board. Some squares may be occupied with blocks. There are two special squares namely the start and the goal, which are not occupied with blocks. (These two squares are distinct.) Once the stone begins to move, it will proceed until it hits a block. In order to bring the stone to the goal, you may have to stop the stone by hitting it against a block, and throw again.


Fig. 1: Example of board (S: start, G: goal)

The movement of the stone obeys the following rules:

  • At the beginning, the stone stands still at the start square.
  • The movements of the stone are restricted to x and y directions. Diagonal moves are prohibited.
  • When the stone stands still, you can make it moving by throwing it. You may throw it to any direction unless it is blocked immediately(Fig. 2(a)).
  • Once thrown, the stone keeps moving to the same direction until one of the following occurs:
    • The stone hits a block (Fig. 2(b), (c)).

      • The stone stops at the square next to the block it hit.
      • The block disappears.
    • The stone gets out of the board.
      • The game ends in failure.
    • The stone reaches the goal square.
      • The stone stops there and the game ends in success.
  • You cannot throw the stone more than 10 times in a game. If the stone does not reach the goal in 10 moves, the game ends in failure.


Fig. 2: Stone movements

Under the rules, we would like to know whether the stone at the start can reach the goal and, if yes, the minimum number of moves required.

With the initial configuration shown in Fig. 1, 4 moves are required to bring the stone from the start to the goal. The route is shown in Fig. 3(a). Notice when the stone reaches the goal, the board configuration has changed as in Fig. 3(b).


Fig. 3: The solution for Fig. D-1 and the final board configuration

Input

The input is a sequence of datasets. The end of the input is indicated by a line containing two zeros separated by a space. The number of datasets never exceeds 100.

Each dataset is formatted as follows.

the width(=w) and the height(=h) of the board 
First row of the board 
... 
h-th row of the board

The width and the height of the board satisfy: 2 <= w <= 20, 1 <= h <= 20.

Each line consists of w decimal numbers delimited by a space. The number describes the status of the corresponding square.

0 vacant square
1 block
2 start position
3 goal position

The dataset for Fig. D-1 is as follows:

6 6 
1 0 0 2 1 0 
1 1 0 0 0 0 
0 0 0 0 0 3 
0 0 0 0 0 0 
1 0 0 0 0 1 
0 1 1 1 1 1

Output

For each dataset, print a line having a decimal integer indicating the minimum number of moves along a route from the start to the goal. If there are no such routes, print -1 instead. Each line should not have any character other than this number.

Sample Input

2 1
3 2
6 6
1 0 0 2 1 0
1 1 0 0 0 0
0 0 0 0 0 3
0 0 0 0 0 0
1 0 0 0 0 1
0 1 1 1 1 1
6 1
1 1 2 1 1 3
6 1
1 0 2 1 1 3
12 1
2 0 1 1 1 1 1 1 1 1 1 3
13 1
2 0 1 1 1 1 1 1 1 1 1 1 3
0 0

Sample Output

1
4
-1
4
10
-1

Source

Japan 2006 Domestic

解题:迭代加深搜索

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <cmath>
 5 #include <algorithm>
 6 #include <climits>
 7 #include <vector>
 8 #include <queue>
 9 #include <cstdlib>
10 #include <string>
11 #include <set>
12 #include <stack>
13 #define LL long long
14 #define pii pair<int,int>
15 #define INF 0x3f3f3f3f
16 using namespace std;
17 const int dir[4][2] = {0,-1,-1,0,1,0,0,1};
18 int mp[110][110],w,h,sx,sy,ans,limit;
19 bool can(int x,int y){
20     return (x < h && x >= 0 && y >= 0 && y < w);
21 }
22 bool dfs(int x,int y,int step){
23     if(step >= limit) return false;
24     for(int i = 0; i < 4; i++){
25             int nx = x;
26             int ny = y;
27             bool flag = false;
28             while(can(nx+dir[i][0],ny+dir[i][1]) && mp[nx+dir[i][0]][ny+dir[i][1]] != 1){
29                 nx += dir[i][0];
30                 ny += dir[i][1];
31                 flag = true;
32                 if(mp[nx][ny] == 3) return true;
33             }
34             if(flag && can(nx+dir[i][0],ny+dir[i][1]) && mp[nx+dir[i][0]][ny+dir[i][1]] == 1){
35                 mp[nx+dir[i][0]][ny+dir[i][1]] = 0;
36                 if(dfs(nx,ny,step+1)) return true;
37                 mp[nx+dir[i][0]][ny+dir[i][1]] = 1;
38             }
39     }
40     return false;
41 }
42 int main() {
43     while(scanf("%d %d",&w,&h),w||h){
44         for(int i = 0; i < h; i++){
45             for(int j = 0; j < w; j++){
46                 scanf("%d",mp[i]+j);
47                 if(mp[i][j] == 2){
48                     sx = i;
49                     sy = j;
50                 }
51             }
52         }
53         for(limit = 1; limit <= 10; limit++){
54             if(dfs(sx,sy,0)) break;
55         }
56         limit <= 10?printf("%d\n",limit):puts("-1");
57     }
58     return 0;
59 }

时间: 2024-12-20 18:41:02

POJ 3009 Curling 2.0的相关文章

poj 3009 Curling 2.0 【DFS】

题意:从2出发,要到达3, 0可以通过,碰到1要停止,并且1处要变成0, 并且从起点开始沿着一个方向要一直前进,直至碰到1(或者3)处才能停止,(就是反射来反射去知道反射经过3).如果反射10次还不能到达3,就输出-1. 策略:深搜. 易错点,方向不容易掌握,并且,出题人把n, m顺序反了. 代码: #include<stdio.h> #include<string.h> int map[25][25]; int ans, n, m; const int dir[4][2] = {

poj 3009 Curling 2.0 (dfs)

id=3009">链接:poj 3009 题意:在一个冰面网格板上,有空白处(无障碍),和障碍块.有一个小石头,给定其起点和终点.求从起点到终点的最小步数 规则:小石头不能在障碍区运动,一旦从某一方向開始运动,不会改变方向,也不会停止.除非碰到障碍物或到达终点才会停止,这为一步.若碰到障碍物.小石头将停在障碍物的旁边,被碰到的一个障碍物将消失. 输入:1代表障碍物(不可到达),0代表空白区,2,代表起点.3代表终点 输出:若小石头能到达终点,且步数最多为十步,输出最小步数,否则输出-1.

POJ 3009 Curling 2.0 (dfs)

Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12700   Accepted: 5343 Description On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is

poj 3009 Curling 2.0 (dfs )

Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 11879   Accepted: 5028 Description On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is

poj 3009 Curling 2.0 dfs回溯

// poj3009 Curling 2.0 // dfs水题,开始的时候没有想到在走了10步以后就不走了这个重要的剪枝, // 结果tle了... // 后来想了个vis数组记录走过的路径,结果发现并不能这样标记,因为每个点可能 // 走多次,所以这样是不对的 // // 哎,继续练吧,水题都差不多搜了一个小时,哎,... #include <algorithm> #include <bitset> #include <cassert> #include <cc

POJ 3009 Curling 2.0 回溯,dfs 难度:0

http://poj.org/problem?id=3009 如果目前起点紧挨着终点,可以直接向终点滚(终点不算障碍) #include <cstdio> #include <cstring> using namespace std; const int maxn = 21; int maz[maxn][maxn]; int n,m; const int dx[4] = {1,-1,0,0}; const int dy[4] = {0,0,1,-1}; bool in(int x,

POj 3009 Curling 2.0(DFS + 模拟)

题目链接:http://poj.org/problem?id=3009 题意: 题目很复杂,直接抽象化解释了.给你一个w * h的矩形格子,其中有包含一个数字“2”和一个数字“3”,剩下的格子由“0”和“1”组成,目的是计算从“2”走到“3”的最短步数,“1”代表障碍物,“0”代表可以通行.“2”可以往周围四个方向走,如果往某一个方向走,那么停下来的条件是,当这个方向上存在障碍物“1”,且会停在这个障碍物的前一个格子,并会击碎这个障碍物;如果选择的方向上没有障碍物“1”也没有终点“3”,那么就会

POJ 3009 Curling 2.0 {广度优先搜索}

原题 $On Planet MM-21, after their Olympic games this year, curling is getting popular. But the rules are somewhat different from ours. The game is played on an ice game board on which a square mesh is marked. They use only a single stone. The purpose

poj 3009 Curling 2.0 深搜

http://poj.org/problem?id=3009 题意:一个小球在一个格子里滑行,当你给它一个力时,他会一直滑,直到前方碰到一个雪球停止,这时前方的雪球会消失,你继续给该小球任意一个方向的力...问至少需要几步才能到达到终点. 分析: 一般在求  最短路    时会用到   广搜,但是  本题  在搜索时, 每走一步, 现场状态是需要改变的 ,如果该步不满足,又需要把现场状态还原回去  ,这样   深搜  才能满足 因此用  深搜     只能把   所有能到达终点的路的步数