邻接表无向图(一)之 C语言详解

本章介绍邻接表无向图。在"图的理论基础"中已经对图进行了理论介绍,这里就不再对图的概念进行重复说明了。和以往一样,本文会先给出C语言的实现;后续再分别给出C++和Java版本的实现。实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可。若文章有错误或不足的地方,请不吝指出!

目录

1. 邻接表无向图的介绍
2. 邻接表无向图的代码说明
3. 邻接表无向图的完整源码

转载请注明出处:http://www.cnblogs.com/skywang12345/

更多内容:数据结构与算法系列
目录

邻接表无向图的介绍

邻接表无向图是指通过邻接表表示的无向图。

上面的图G1包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"(A,C),(A,D),(A,F),(B,C),(C,D),(E,G),(F,G)"共7条边。

上图右边的矩阵是G1在内存中的邻接表示意图。每一个顶点都包含一条链表,该链表记录了"该顶点的邻接点的序号"。例如,第2个顶点(顶点C)包含的链表所包含的节点的数据分别是"0,1,3";而这"0,1,3"分别对应"A,B,D"的序号,"A,B,D"都是C的邻接点。就是通过这种方式记录图的信息的。

邻接表无向图的代码说明

1.
基本定义


// 邻接表中表对应的链表的顶点
typedef struct _ENode
{
int ivex; // 该边所指向的顶点的位置
struct _ENode *next_edge; // 指向下一条弧的指针
}ENode, *PENode;

// 邻接表中表的顶点
typedef struct _VNode
{
char data; // 顶点信息
ENode *first_edge; // 指向第一条依附该顶点的弧
}VNode;

// 邻接表
typedef struct _LGraph
{
int vexnum; // 图的顶点的数目
int edgnum; // 图的边的数目
VNode vexs[MAX];
}LGraph;

(01)
LGraph是邻接表对应的结构体。
vexnum是顶点数,edgnum是边数;vexs则是保存顶点信息的一维数组。

(02)
VNode是邻接表顶点对应的结构体。
data是顶点所包含的数据,而first_edge是该顶点所包含链表的表头指针。

(03)
ENode是邻接表顶点所包含的链表的节点对应的结构体。

ivex是该节点所对应的顶点在vexs中的索引,而next_edge是指向下一个节点的。

2.
创建矩阵

这里介绍提供了两个创建矩阵的方法。一个是用已知数据,另一个则需要用户手动输入数据

2.1
创建图(用已提供的矩阵)


/*
* 创建邻接表对应的图(用已提供的数据)
*/
LGraph* create_example_lgraph()
{
char c1, c2;
char vexs[] = {‘A‘, ‘B‘, ‘C‘, ‘D‘, ‘E‘, ‘F‘, ‘G‘};
char edges[][2] = {
{‘A‘, ‘C‘},
{‘A‘, ‘D‘},
{‘A‘, ‘F‘},
{‘B‘, ‘C‘},
{‘C‘, ‘D‘},
{‘E‘, ‘G‘},
{‘F‘, ‘G‘}};
int vlen = LENGTH(vexs);
int elen = LENGTH(edges);
int i, p1, p2;
ENode *node1, *node2;
LGraph* pG;

if ((pG=(LGraph*)malloc(sizeof(LGraph))) == NULL )
return NULL;
memset(pG, 0, sizeof(LGraph));

// 初始化"顶点数"和"边数"
pG->vexnum = vlen;
pG->edgnum = elen;
// 初始化"邻接表"的顶点
for(i=0; i<pG->vexnum; i++)
{
pG->vexs[i].data = vexs[i];
pG->vexs[i].first_edge = NULL;
}

// 初始化"邻接表"的边
for(i=0; i<pG->vexnum; i++)
{
// 读取边的起始顶点和结束顶点
c1 = edges[i][0];
c2 = edges[i][1];

p1 = get_position(*pG, c1);
p2 = get_position(*pG, c2);
// 初始化node1
node1 = (ENode*)malloc(sizeof(ENode));
node1->ivex = p2;
// 将node1链接到"p1所在链表的末尾"
if(pG->vexs[p1].first_edge == NULL)
pG->vexs[p1].first_edge = node1;
else
link_last(pG->vexs[p1].first_edge, node1);
// 初始化node2
node2 = (ENode*)malloc(sizeof(ENode));
node2->ivex = p1;
// 将node2链接到"p2所在链表的末尾"
if(pG->vexs[p2].first_edge == NULL)
pG->vexs[p2].first_edge = node2;
else
link_last(pG->vexs[p2].first_edge, node2);
}

return pG;
}

createexamplelgraph()的作用是创建一个邻接表无向图。实际上,该方法创建的无向图,就是上面图G1。

2.2
创建图(自己输入)


/*
* 创建邻接表对应的图(自己输入)
*/
LGraph* create_lgraph()
{
char c1, c2;
int v, e;
int i, p1, p2;
ENode *node1, *node2;
LGraph* pG;

// 输入"顶点数"和"边数"
printf("input vertex number: ");
scanf("%d", &v);
printf("input edge number: ");
scanf("%d", &e);
if ( v < 1 || e < 1 || (e > (v * (v-1))))
{
printf("input error: invalid parameters!\n");
return NULL;
}

if ((pG=(LGraph*)malloc(sizeof(LGraph))) == NULL )
return NULL;
memset(pG, 0, sizeof(LGraph));

// 初始化"顶点数"和"边数"
pG->vexnum = v;
pG->edgnum = e;
// 初始化"邻接表"的顶点
for(i=0; i<pG->vexnum; i++)
{
printf("vertex(%d): ", i);
pG->vexs[i].data = read_char();
pG->vexs[i].first_edge = NULL;
}

// 初始化"邻接表"的边
for(i=0; i<pG->vexnum; i++)
{
// 读取边的起始顶点和结束顶点
printf("edge(%d): ", i);
c1 = read_char();
c2 = read_char();

p1 = get_position(*pG, c1);
p2 = get_position(*pG, c2);
// 初始化node1
node1 = (ENode*)malloc(sizeof(ENode));
node1->ivex = p2;
// 将node1链接到"p1所在链表的末尾"
if(pG->vexs[p1].first_edge == NULL)
pG->vexs[p1].first_edge = node1;
else
link_last(pG->vexs[p1].first_edge, node1);
// 初始化node2
node2 = (ENode*)malloc(sizeof(ENode));
node2->ivex = p1;
// 将node2链接到"p2所在链表的末尾"
if(pG->vexs[p2].first_edge == NULL)
pG->vexs[p2].first_edge = node2;
else
link_last(pG->vexs[p2].first_edge, node2);
}

return pG;
}

create_lgraph()是读取用户的输入,将输入的数据转换成对应的无向图。

邻接表无向图的完整源码

点击查看:源代码

邻接表无向图(一)之 C语言详解,布布扣,bubuko.com

时间: 2024-10-08 10:33:38

邻接表无向图(一)之 C语言详解的相关文章

邻接表无向图(二)之 C++详解

本章是通过C++实现邻接表无向图. 目录 1. 邻接表无向图的介绍 2. 邻接表无向图的代码说明 3. 邻接表无向图的完整源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 邻接表无向图的介绍 邻接表无向图是指通过邻接表表示的无向图. 上面的图G1包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"(A,C),(A,D),(A,F),(B,C),(C,D),(E,G),(F,G)"

邻接表无向图(三)之 Java详解

前面分别介绍了邻接表无向图的C和C++实现,本文通过Java实现邻接表无向图. 目录 1. 邻接表无向图的介绍 2. 邻接表无向图的代码说明 3. 邻接表无向图的完整源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 邻接表无向图的介绍 邻接表无向图是指通过邻接表表示的无向图. 上面的图G1包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"(A,C),(A,D),(A,F),(B,C),

邻接表无向图的介绍

邻接表无向图是指通过邻接表表示的无向图. 上面的图G1包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"(A,C),(A,D),(A,F),(B,C),(C,D),(E,G),(F,G)"共7条边. 上图右边的矩阵是G1在内存中的邻接表示意图.每一个顶点都包含一条链表,该链表记录了"该顶点的邻接点的序号".例如,第2个顶点(顶点C)包含的链表所包含的节点的数据分别是"0,1,3":而这"0,1,3"

邻接表无向图

一.邻接表无向图的介绍 邻接表无向图是指通过邻接表表示的无向图. 上面的图G1包含了"A,B,C,D,E,F,G"共7个顶点,而且包含了"(A,C),(A,D),(A,F),(B,C),(C,D),(E,G),(F,G)"共7条边. 上图右边的矩阵是G1在内存中的邻接表示意图.每一个顶点都包含一条链表,该链表记录了"该顶点的邻接点的序号".例如,第2个顶点(顶点C)包含的链表所包含的节点的数据分别是"0,1,3":而这&quo

Prim算法(一)之 C语言详解

本章介绍普里姆算法.和以往一样,本文会先对普里姆算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里姆算法的代码说明 4. 普里姆算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 普里姆算法介绍 普里姆(Prim)算法,和克鲁斯卡尔算法一样,是用来求加权连通图的最小生成树的算法. 基本思想 对于图G而言,V是所

哈夫曼树(一)之 C语言详解

本章介绍哈夫曼树.和以往一样,本文会先对哈夫曼树的理论知识进行简单介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现:实现的语言虽不同,但是原理如出一辙,选择其中之一进行了解即可.若文章有错误或不足的地方,请帮忙指出! 目录 1. 哈夫曼树的介绍 2. 哈夫曼树的图文解析 3. 哈夫曼树的基本操作 4. 哈夫曼树的完整源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 哈夫曼树的介绍 Huffman

原来Github上的README.md文件这么有意思——Markdown语言详解(sublime text2 版本)

一直想学习 Markdown 语言,想起以前读的一篇 赵凯强 的 博客 <原来Github上的README.md文件这么有意思——Markdown语言详解>,该篇博主 使用的是Mac系统,所以推荐使用Mou,本人使用 Win7 系统所以想写一篇 sublime text2 的版本

Html5之高级-2 HTML5表单属性(属性介绍、属性详解)

一.属性介绍 属性介绍 - 有一些输入类型要求使用特定的属性才能显示效果,如前面提到过min,max,step. 其他输入类型需要使用一些属性来改进其他性能,或者决定验证过程的重要性.HTML5 标准中再原来的基础上增加了一些新的属性. - Placeholder 属性 - Nultiple 属性 - Autofocus 属性 - Form 属性 二.属性详解 Placeholder 属性 - Placeholder 属性通常用于search输入类型,也可以用在文本域.它表示一个简单提示.单词或

Dijkstra算法(一)之 C语言详解

本章介绍迪杰斯特拉算法.和以往一样,本文会先对迪杰斯特拉算法的理论论知识进行介绍,然后给出C语言的实现.后续再分别给出C++和Java版本的实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法图解 3. 迪杰斯特拉算法的代码说明 4. 迪杰斯特拉算法的源码 转载请注明出处:http://www.cnblogs.com/skywang12345/ 更多内容:数据结构与算法系列 目录 迪杰斯特拉算法介绍 迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路