【HDOJ】3509 Buge's Fibonacci Number Problem

快速矩阵幂,系数矩阵由多个二项分布组成。
第1列是(0,(a+b)^k)
第2列是(0,(a+b)^(k-1),0)
第3列是(0,(a+b)^(k-2),0,0)
以此类推。

  1 /* 3509 */
  2 #include <iostream>
  3 #include <string>
  4 #include <map>
  5 #include <queue>
  6 #include <set>
  7 #include <stack>
  8 #include <vector>
  9 #include <deque>
 10 #include <algorithm>
 11 #include <cstdio>
 12 #include <cmath>
 13 #include <ctime>
 14 #include <cstring>
 15 #include <climits>
 16 #include <cctype>
 17 #include <cassert>
 18 #include <functional>
 19 #include <iterator>
 20 #include <iomanip>
 21 using namespace std;
 22 //#pragma comment(linker,"/STACK:102400000,1024000")
 23
 24 // #define DEBUG
 25 #define sti                set<int>
 26 #define stpii            set<pair<int, int> >
 27 #define mpii            map<int,int>
 28 #define vi                vector<int>
 29 #define pii                pair<int,int>
 30 #define vpii            vector<pair<int,int> >
 31 #define rep(i, a, n)     for (int i=a;i<n;++i)
 32 #define per(i, a, n)     for (int i=n-1;i>=a;--i)
 33 #define clr                clear
 34 #define pb                 push_back
 35 #define mp                 make_pair
 36 #define fir                first
 37 #define sec                second
 38 #define all(x)             (x).begin(),(x).end()
 39 #define SZ(x)             ((int)(x).size())
 40 #define lson            l, mid, rt<<1
 41 #define rson            mid+1, r, rt<<1|1
 42
 43 typedef struct mat_t {
 44     __int64 m[55][55];
 45
 46     mat_t() {
 47         memset(m, 0, sizeof(m));
 48     }
 49 } mat_t;
 50
 51 const int maxn = 55;
 52 __int64 A[maxn], B[maxn], F1[maxn], F2[maxn];
 53 int mod, L;
 54
 55 mat_t matMult(mat_t a, mat_t b) {
 56     mat_t c;
 57
 58     rep(k, 0, L) {
 59         rep(i, 0, L) {
 60             if (a.m[i][k]) {
 61                 rep(j, 0, L) {
 62                     if (b.m[k][j]) {
 63                         c.m[i][j] = (c.m[i][j] + a.m[i][k]*b.m[k][j]%mod)%mod;
 64                     }
 65                 }
 66             }
 67         }
 68     }
 69
 70     return c;
 71 }
 72
 73 mat_t matPow(mat_t a, int n) {
 74     mat_t ret;
 75
 76     rep(i, 0, L)    ret.m[i][i] = 1;
 77
 78     while (n) {
 79         if (n & 1)
 80             ret = matMult(ret, a);
 81         a = matMult(a, a);
 82         n >>= 1;
 83     }
 84
 85     return ret;
 86 }
 87
 88 int main() {
 89     ios::sync_with_stdio(false);
 90     #ifndef ONLINE_JUDGE
 91         freopen("data.in", "r", stdin);
 92         freopen("data.out", "w", stdout);
 93     #endif
 94
 95     int t;
 96     int f1, f2, a, b;
 97     int n, k_;
 98     __int64 ans;
 99     mat_t e, tmp;
100     int i, j, k;
101     __int64 c;
102     int l, r, nc;
103
104     scanf("%d", &t);
105     while (t--) {
106         scanf("%d %d %d %d %d %d %d", &f1,&f2, &a,&b, &k_, &n, &mod);
107         L = k_ + 2;
108         A[0] = B[0] = F1[0] = F2[0] = 1;
109         for (i=1; i<L; ++i) {
110             A[i] = A[i-1] * a % mod;
111             B[i] = B[i-1] * b % mod;
112             F1[i] = F1[i-1] * f1 % mod;
113             F2[i] = F2[i-1] * f2 % mod;
114         }
115
116         memset(e.m, 0, sizeof(e.m));
117         e.m[0][0] = e.m[1][0] = 1;
118         for (j=1,k=k_; j<L; ++j,--k) {
119             for (i=1,c=1,nc=k+1,r=k,l=1; nc; ++i,--nc,c=c*r/l,--r,++l) {
120                 e.m[i][j] = (c % mod) * A[k+1-i] % mod * B[i-1] % mod;
121             }
122         }
123         #ifdef DEBUG
124         for (i=0; i<L; ++i) {
125             for (j=0; j<L; ++j)
126                 printf("%I64d ", e.m[i][j]);
127             putchar(‘\n‘);
128         }
129         #endif
130
131         tmp = matPow(e, n-1);
132
133         ans = F1[k_] * tmp.m[0][0] % mod;
134         for (j=1; j<L; ++j) {
135             ans = (ans + F2[k_+1-j]*F1[j-1]%mod*tmp.m[j][0]%mod)%mod;
136         }
137
138         printf("%I64d\n", ans);
139     }
140
141     #ifndef ONLINE_JUDGE
142         printf("time = %d.\n", (int)clock());
143     #endif
144
145     return 0;
146 }

【HDOJ】3509 Buge's Fibonacci Number Problem

时间: 2024-10-27 04:42:37

【HDOJ】3509 Buge's Fibonacci Number Problem的相关文章

hdu 3509 Buge&#39;s Fibonacci Number Problem

点击此处即可传送 hdu 3509 题目大意:F1 = f1, F2 = f2;; F(n) = a*F(n-1) + b*F(n-2); S(n) = F1^k + F2^k +-.+Fn^k; 求S(n) mod m; 解题思路: 1:首先一个难题就是怎么判断矩阵的维数(矩阵的维数是个变量) 解决方法:开一个比较大的数组,然后再用一个公有变量记一下就行了,具体详见代码: 2:k次方,找规律: 具体上代码吧: /* 2015 - 8 - 16 晚上 Author: ITAK 今日的我要超越昨日

Buge&#39;s Fibonacci Number Problem

Buge's Fibonacci Number Problem Description snowingsea is having Buge’s discrete mathematics lesson, Buge is now talking about the Fibonacci Number. As a bright student, snowingsea, of course, takes it as a piece of cake. He feels boring and soon com

【HDOJ】4403 A very hard Aoshu problem

HASH+暴力. 1 /* 4403 */ 2 #include <iostream> 3 #include <cstdio> 4 #include <cstring> 5 #include <cstdlib> 6 #include <map> 7 using namespace std; 8 9 #define MAXN 55 10 11 map<int, int> tb[2]; 12 char s[MAXN]; 13 14 int

【HDOJ】4972 A simple dynamic programming problem

水题. 1 #include <cstdio> 2 #include <cstring> 3 #include <cstdlib> 4 5 int abs(int x) { 6 return x<0 ? -x:x; 7 } 8 9 int main() { 10 int t, n; 11 int cur, past; 12 __int64 ans; 13 bool flag; 14 15 #ifndef ONLINE_JUDGE 16 freopen("

【HDOJ】2732 Leapin&#39; Lizards

贪心+网络流.对于每个结点,构建入点和出点.对于每一个lizard>0,构建边s->in position of lizard, 容量为1.对于pillar>0, 构建边in position of pillar -> out position of pillar, 容量为number of pillar.若沿四个方向移动距离d可以超过边界,则构建边out position of pillar -> t, 容量为INF:否则, 对于曼哈顿距离l(l>0 and l<

【HDOJ】4956 Poor Hanamichi

基本数学题一道,看错位数,当成大数减做了,而且还把方向看反了.所求为最接近l的值. 1 #include <cstdio> 2 3 int f(__int64 x) { 4 int i, sum; 5 6 i = sum = 0; 7 while (x) { 8 if (i & 1) 9 sum -= x%10; 10 else 11 sum += x%10; 12 ++i; 13 x/=10; 14 } 15 return sum; 16 } 17 18 int main() { 1

【HDOJ】1099 Lottery

题意超难懂,实则一道概率论的题目.求P(n).P(n) = n*(1+1/2+1/3+1/4+...+1/n).结果如果可以除尽则表示为整数,否则表示为假分数. 1 #include <cstdio> 2 #include <cstring> 3 4 #define MAXN 25 5 6 __int64 buf[MAXN]; 7 8 __int64 gcd(__int64 a, __int64 b) { 9 if (b == 0) return a; 10 else return

【HDOJ】2844 Coins

完全背包. 1 #include <stdio.h> 2 #include <string.h> 3 4 int a[105], c[105]; 5 int n, m; 6 int dp[100005]; 7 8 int mymax(int a, int b) { 9 return a>b ? a:b; 10 } 11 12 void CompletePack(int c) { 13 int i; 14 15 for (i=c; i<=m; ++i) 16 dp[i]

【HDOJ】1818 It&#39;s not a Bug, It&#39;s a Feature!

状态压缩+优先级bfs. 1 /* 1818 */ 2 #include <iostream> 3 #include <queue> 4 #include <cstdio> 5 #include <cstring> 6 #include <cstdlib> 7 #include <algorithm> 8 using namespace std; 9 10 #define MAXM 105 11 12 typedef struct {