Problem Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1
-1
8 0 -2
Sample Output
15
题解:属于动态规划,不过可以暴力水过,列举所有可能找出最大和即可。
先求出前缀和,把数组变成第n列是前n列的和,这样不用每次列举的时候都求和。
然后两个for循环列举列,两个for循环列举行,具体还是看代码吧。
#include <cstdio> #include <iostream> #include <string> #include <sstream> #include <cstring> #include <stack> #include <queue> #include <algorithm> #include <cmath> #include <map> #define PI acos(-1.0) #define ms(a) memset(a,0,sizeof(a)) #define msp memset(mp,0,sizeof(mp)) #define msv memset(vis,0,sizeof(vis)) using namespace std; //#define LOCAL int main() { #ifdef LOCAL freopen("in.txt", "r", stdin); #endif // LOCAL ios::sync_with_stdio(false); int mp[120][120]; int n; while(cin>>n) {msp; for(int i=0; i<n; i++) for(int j=0; j<n; j++) { cin>>mp[i][j]; if(j!=0)mp[i][j]=mp[i][j]+mp[i][j-1]; } int cnt=0,maxx=-1e9; for(int x1=0; x1<n; x1++) for(int x2=x1; x2<n; x2++) { for(int y1=0; y1<n; y1++) {cnt=0; for(int y2=y1; y2<n; y2++) { if(x1!=x2)cnt+=mp[y2][x2]-mp[y2][x1]; else cnt+=mp[y2][x2]; maxx=max(maxx,cnt); }} } printf("%d\n",maxx);} return 0; }