93、R语言教程详解

加载数据
> w<-read.table("test.prn",header = T)
> w
  X.. X...1
1   A     2
2   B     3
3   C     5
4   D     5
> library(readxl)
> dat<-read_excel("test.xlsx")
> dat
# A tibble: 4 x 2
  `商品` `价格`
   <chr>  <dbl>
1      A      2
2      B      3
3      C      5
4      D      5
> bank=read.table("bank-full.csv",header = TRUE,sep=",")
查看数据结构
> str(bank)
‘data.frame‘:    41188 obs. of  21 variables:
 $ age           : int  56 57 37 40 56 45 59 41 24 25 ...
 $ job           : Factor w/ 12 levels "admin.","blue-collar",..: 4 8 8 1 8 8 1 2 10 8 ...
 $ marital       : Factor w/ 4 levels "divorced","married",..: 2 2 2 2 2 2 2 2 3 3 ...
 $ education     : Factor w/ 8 levels "basic.4y","basic.6y",..: 1 4 4 2 4 3 6 8 6 4 ...
 $ default       : Factor w/ 3 levels "no","unknown",..: 1 2 1 1 1 2 1 2 1 1 ...
 $ housing       : Factor w/ 3 levels "no","unknown",..: 1 1 3 1 1 1 1 1 3 3 ...
 $ loan          : Factor w/ 3 levels "no","unknown",..: 1 1 1 1 3 1 1 1 1 1 ...
 $ contact       : Factor w/ 2 levels "cellular","telephone": 2 2 2 2 2 2 2 2 2 2 ...
 $ month         : Factor w/ 10 levels "apr","aug","dec",..: 7 7 7 7 7 7 7 7 7 7 ...
 $ day_of_week   : Factor w/ 5 levels "fri","mon","thu",..: 2 2 2 2 2 2 2 2 2 2 ...
 $ duration      : int  261 149 226 151 307 198 139 217 380 50 ...
 $ campaign      : int  1 1 1 1 1 1 1 1 1 1 ...
 $ pdays         : int  999 999 999 999 999 999 999 999 999 999 ...
 $ previous      : int  0 0 0 0 0 0 0 0 0 0 ...
 $ poutcome      : Factor w/ 3 levels "failure","nonexistent",..: 2 2 2 2 2 2 2 2 2 2 ...
 $ emp.var.rate  : num  1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 ...
 $ cons.price.idx: num  94 94 94 94 94 ...
 $ cons.conf.idx : num  -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 ...
 $ euribor3m     : num  4.86 4.86 4.86 4.86 4.86 ...
 $ nr.employed   : num  5191 5191 5191 5191 5191 ...
 $ y             : Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1 ...
查看数据的最小值,最大值,中位数,平均数,分位数
> summary(bank)
      age                 job            marital
 Min.   :17.00   admin.     :10422   divorced: 4612
 1st Qu.:32.00   blue-collar: 9254   married :24928
 Median :38.00   technician : 6743   single  :11568
 Mean   :40.02   services   : 3969   unknown :   80
 3rd Qu.:47.00   management : 2924
 Max.   :98.00   retired    : 1720
                 (Other)    : 6156
               education        default         housing
 university.degree  :12168   no     :32588   no     :18622
 high.school        : 9515   unknown: 8597   unknown:  990
 basic.9y           : 6045   yes    :    3   yes    :21576
 professional.course: 5243
 basic.4y           : 4176
 basic.6y           : 2292
 (Other)            : 1749
      loan            contact          month       day_of_week
 no     :33950   cellular :26144   may    :13769   fri:7827
 unknown:  990   telephone:15044   jul    : 7174   mon:8514
 yes    : 6248                     aug    : 6178   thu:8623
                                   jun    : 5318   tue:8090
                                   nov    : 4101   wed:8134
                                   apr    : 2632
                                   (Other): 2016
    duration         campaign          pdays
 Min.   :   0.0   Min.   : 1.000   Min.   :  0.0
 1st Qu.: 102.0   1st Qu.: 1.000   1st Qu.:999.0
 Median : 180.0   Median : 2.000   Median :999.0
 Mean   : 258.3   Mean   : 2.568   Mean   :962.5
 3rd Qu.: 319.0   3rd Qu.: 3.000   3rd Qu.:999.0
 Max.   :4918.0   Max.   :56.000   Max.   :999.0  

    previous            poutcome      emp.var.rate
 Min.   :0.000   failure    : 4252   Min.   :-3.40000
 1st Qu.:0.000   nonexistent:35563   1st Qu.:-1.80000
 Median :0.000   success    : 1373   Median : 1.10000
 Mean   :0.173                       Mean   : 0.08189
 3rd Qu.:0.000                       3rd Qu.: 1.40000
 Max.   :7.000                       Max.   : 1.40000  

 cons.price.idx  cons.conf.idx     euribor3m
 Min.   :92.20   Min.   :-50.8   Min.   :0.634
 1st Qu.:93.08   1st Qu.:-42.7   1st Qu.:1.344
 Median :93.75   Median :-41.8   Median :4.857
 Mean   :93.58   Mean   :-40.5   Mean   :3.621
 3rd Qu.:93.99   3rd Qu.:-36.4   3rd Qu.:4.961
 Max.   :94.77   Max.   :-26.9   Max.   :5.045  

  nr.employed     y
 Min.   :4964   no :36548
 1st Qu.:5099   yes: 4640
 Median :5191
 Mean   :5167
 3rd Qu.:5228
 Max.   :5228              

> psych::describe(bank)
        方差  个数    平均值  标准差  均值    去掉最大   中位数   最小值  最大值  极差    偏差        峰度
                                  绝对偏差
                             最小值
                            之后
                            的平均数

               vars     n    mean     sd  median trimmed   mad     min     max   range  skew    kurtosis
age               1 41188   40.02  10.42   38.00   39.30  10.38   17.00   98.00   81.00  0.78     0.79
job*              2 41188    4.72   3.59    3.00    4.48   2.97    1.00   12.00   11.00  0.45    -1.39
marital*          3 41188    2.17   0.61    2.00    2.21   0.00    1.00    4.00    3.00 -0.06    -0.34
education*        4 41188    4.75   2.14    4.00    4.88   2.97    1.00    8.00    7.00 -0.24    -1.21
default*          5 41188    1.21   0.41    1.00    1.14   0.00    1.00    3.00    2.00  1.44     0.07
housing*          6 41188    2.07   0.99    3.00    2.09   0.00    1.00    3.00    2.00 -0.14    -1.95
loan*             7 41188    1.33   0.72    1.00    1.16   0.00    1.00    3.00    2.00  1.82     1.38
contact*          8 41188    1.37   0.48    1.00    1.33   0.00    1.00    2.00    1.00  0.56    -1.69
month*            9 41188    5.23   2.32    5.00    5.31   2.97    1.00   10.00    9.00 -0.31    -1.03
day_of_week*     10 41188    3.00   1.40    3.00    3.01   1.48    1.00    5.00    4.00  0.01    -1.27
duration         11 41188  258.29 259.28  180.00  210.61 139.36    0.00 4918.00 4918.00  3.26    20.24
campaign         12 41188    2.57   2.77    2.00    1.99   1.48    1.00   56.00   55.00  4.76    36.97
pdays            13 41188  962.48 186.91  999.00  999.00   0.00    0.00  999.00  999.00 -4.92    22.23
previous         14 41188    0.17   0.49    0.00    0.05   0.00    0.00    7.00    7.00  3.83    20.11
poutcome*        15 41188    1.93   0.36    2.00    2.00   0.00    1.00    3.00    2.00 -0.88     3.98
emp.var.rate     16 41188    0.08   1.57    1.10    0.27   0.44   -3.40    1.40    4.80 -0.72    -1.06
cons.price.idx   17 41188   93.58   0.58   93.75   93.58   0.56   92.20   94.77    2.57 -0.23    -0.83
cons.conf.idx    18 41188  -40.50   4.63  -41.80  -40.60   6.52  -50.80  -26.90   23.90  0.30    -0.36
euribor3m        19 41188    3.62   1.73    4.86    3.81   0.16    0.63    5.04    4.41 -0.71    -1.41
nr.employed      20 41188 5167.04  72.25 5191.00 5178.43  55.00 4963.60 5228.10  264.50 -1.04     0.00
y*               21 41188    1.11   0.32    1.00    1.02   0.00    1.00    2.00    1.00  2.45     4.00

               se
age            0.05
job*           0.02
marital*       0.00
education*     0.01
default*       0.00
housing*       0.00
loan*          0.00
contact*       0.00
month*         0.01
day_of_week*   0.01
duration       1.28
campaign       0.01
pdays          0.92
previous       0.00
poutcome*      0.00
emp.var.rate   0.01
cons.price.idx 0.00
cons.conf.idx  0.02
euribor3m      0.01
nr.employed    0.36
y*             0.00

查看数据是否有缺失值
> sapply(bank,anyNA)
           age            job        marital      education
         FALSE          FALSE          FALSE          FALSE
       default        housing           loan        contact
         FALSE          FALSE          FALSE          FALSE
         month    day_of_week       duration       campaign
         FALSE          FALSE          FALSE          FALSE
         pdays       previous       poutcome   emp.var.rate
         FALSE          FALSE          FALSE          FALSE
cons.price.idx  cons.conf.idx      euribor3m    nr.employed
         FALSE          FALSE          FALSE          FALSE
             y
         FALSE 

成功与不成功的个数
> table(bank$y)

   no   yes
36548  4640 

在是否结婚这个属性的取值与
是否成功的数量比较
> table(bank$y,bank$marital)

      divorced married single unknown
  no      4136   22396   9948      68
  yes      476    2532   1620      12

> xtabs(~y+marital,data=bank)
     marital
y     divorced married single unknown
  no      4136   22396   9948      68
  yes      476    2532   1620      12
> tab=table(bank$y,bank$marital)
> tab

      divorced married single unknown
  no      4136   22396   9948      68
  yes      476    2532   1620      12

在是否结婚这个属性上的取值
> margin.table(tab,2)

divorced  married   single  unknown
    4612    24928    11568       80
> margin.table(tab,1)

   no   yes
36548  4640 

在是否结婚这个属性上横向看概率
> prop.table(tab,1)

         divorced     married      single     unknown
  no  0.113166247 0.612783189 0.272189997 0.001860567
  yes 0.102586207 0.545689655 0.349137931 0.002586207
在是否结婚这个属性上纵向看概率

> prop.table(tab,2)

       divorced   married    single   unknown
  no  0.8967910 0.8984275 0.8599585 0.8500000
  yes 0.1032090 0.1015725 0.1400415 0.1500000

平的列联表
以第一列和第二列,展开分类group by 1,2
以col.vars 的取值 进行次数统计
> ftable(bank[,c(3,4,21)],row.vars = 1:2,col.vars = "y")
                             y   no  yes
marital  education
divorced basic.4y               406   83
         basic.6y               169   13
         basic.9y               534   31
         high.school           1086  107
         illiterate               1    1
         professional.course    596   61
         university.degree     1177  160
         unknown                167   20
married  basic.4y              2915  313
         basic.6y              1628  139
         basic.9y              3858  298
         high.school           4683  475
         illiterate              12    3
         professional.course   2799  357
         university.degree     5573  821
         unknown                928  126
single   basic.4y               422   31
         basic.6y               301   36
         basic.9y              1174  142
         high.school           2702  448
         illiterate               1    0
         professional.course   1247  177
         university.degree     3723  683
         unknown                378  103
unknown  basic.4y                 5    1
         basic.6y                 6    0
         basic.9y                 6    2
         high.school             13    1
         illiterate               0    0
         professional.course      6    0
         university.degree       25    6
         unknown                  7    2

卡方检验,在p值小于2.2e-16时,拒绝原假设,认为数据不服从卡方分布
> chisq.test(tab)

    Pearson‘s Chi-squared test

data:  tab
X-squared = 122.66, df = 3, p-value < 2.2e-16

画直方图
> hist(bank$age)
> library(lattice)

画连续变量的分布,就是把直方图的中位数连接起来
以年龄为横轴,y为纵轴,数据是bank,画图,auto.key是否有图例
> densityplot(~age,groups = y,data=bank,plot.point=FALSE,auto.key = TRUE)

画Box图
> boxplot(age~y,data=bank)

双样本t分布检验,p值小于0.05时拒绝原假设
这里的原假设是两个样本没有相关性
得到的结果是p值为1.805e-06,拒绝两个样本没有相关性的假设
这里认为两个样本有相关性
> t.test(age~y,data=bank,alternative="two.sided",var.equal=FALSE)

    Welch Two Sample t-test

data:  age by y
t = -4.7795, df = 5258.5, p-value = 1.805e-06
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
 -1.4129336 -0.5909889
sample estimates:
 mean in group no mean in group yes
         39.91119          40.91315 

数据可视化
画饼图
> tab=table(bank$marital)
> pie(tab)

画直方图
> tab=table(bank$marital)
> barplot(tab)

画下面这个图
> tab=table(bank$marital,bank$y)
> plot(tab)

画层叠直方图
> tab=table(bank$marital,bank$y)
> lattice::barchart(tab,auto.key=TRUE)

加载这个包,准备画图
> library(dplyr)
> data=group_by(bank,marital,y)
> data=tally(data)
!!!!!!!!!!!!!
> ggplot2::ggplot(data=data,mapping=aes(marital,n))+geom_bar(mapping=aes(fill=y),position="dodge",stat="identity")

数据预处理
分组之后再画图
> labels=c(‘青年‘,‘中年‘,‘老年‘)
> bank$age_group=cut(bank$age,breaks = c(0,35,55,100),right = FALSE,labels = labels)
> library(ggplot2)
> ggplot(data=bank,mapping = aes(age_group))+geom_bar(mapping = aes(fill=y),position="dodge",stat="count")

衍生变量
直接使用$符向原数据框添加新的变量
> bank$log.cons.price.idx=log(bank$cons.price.idx)
使用transform函数向原数据框添加变量
> bank<-transform(bank,log.cons.price.idx=log(cons.price.idx),log.nr.employed=log(nr.employed))
使用dplyr包里的mutate函数增加变量
> bank<-dplyr::mutate(bank,log.cons.price.idx=log(cons.price.idx))
使用dplyr包里的transmute函数只保留新生成的变量
> bank2<-dplyr::transmute(bank,log.cons.price.idx=log(cons.price.idx),log.nr.employed=log(nr.employed))

中心化

> v=1:10
> v1=v-mean(v)
> v2=scale(v,center=TRUE,scale = FALSE)

无量纲化

> V1=v/sqrt(sum(v^2)/(length(v)-1))
> v2=scale(v,center=FALSE,scale=TRUE)

根据最大最小值进行归一化

> v3=(v-min(v))/(max(v)-min(v))

进行标准正态化

> v1=(v-mean(v))/sd(v)
> v2=scale(v,center = TRUE,scale=TRUE)

Box-Cox变换
使用car包里的boxCox函数
> install.packages("car")
> library(car)
> boxCox(age~.,data=bank)

使用caret包,做Box-Cox变换
> install.packages("caret")
> library(caret)
> dat<-subset(bank,select="age")
> trans<-preProcess(dat,method=C("BoxCox"))

数据预处理下
违反常识的异常值
基于数据分布的异常值(离群点)识别
bank.dirty=read.csv("bank-dirty.csv")
summary(bank.dirty)

     age                  job            marital                    education
 Min.   : 17.00   admin.     :10422   divorced: 4612   university.degree  :12165
 1st Qu.: 32.00   blue-collar: 9254   married :24928   high.school        : 9515
 Median : 38.00   technician : 6743   single  :11568   basic.9y           : 6043
 Mean   : 40.03   services   : 3969   NA‘s    :   80   professional.course: 5242
 3rd Qu.: 47.00   management : 2924                    basic.4y           : 4175
 Max.   :123.00   (Other)    : 7546                    (Other)            : 2310
 NA‘s   :2        NA‘s       :  330                    NA‘s               : 1738
 default      housing        loan            contact          month
 no  :32588   no  :18622   no  :33950   cellular :26144   may    :13769
 yes :    3   yes :21576   yes : 6248   telephone:15044   jul    : 7174
 NA‘s: 8597   NA‘s:  990   NA‘s:  990                     aug    : 6178
                                                          jun    : 5318
                                                          nov    : 4101
                                                          apr    : 2632
                                                          (Other): 2016
 day_of_week    duration         campaign          pdays          previous
 fri:7827    Min.   :   0.0   Min.   : 1.000   Min.   :  0.0   Min.   :0.000
 mon:8514    1st Qu.: 102.0   1st Qu.: 1.000   1st Qu.:999.0   1st Qu.:0.000
 thu:8623    Median : 180.0   Median : 2.000   Median :999.0   Median :0.000
 tue:8090    Mean   : 258.3   Mean   : 2.568   Mean   :962.5   Mean   :0.173
 wed:8134    3rd Qu.: 319.0   3rd Qu.: 3.000   3rd Qu.:999.0   3rd Qu.:0.000
             Max.   :4918.0   Max.   :56.000   Max.   :999.0   Max.   :7.000  

        poutcome      emp.var.rate      cons.price.idx  cons.conf.idx
 failure    : 4252   Min.   :-3.40000   Min.   :92.20   Min.   :-50.8
 nonexistent:35563   1st Qu.:-1.80000   1st Qu.:93.08   1st Qu.:-42.7
 success    : 1373   Median : 1.10000   Median :93.75   Median :-41.8
                     Mean   : 0.08189   Mean   :93.58   Mean   :-40.5
                     3rd Qu.: 1.40000   3rd Qu.:93.99   3rd Qu.:-36.4
                     Max.   : 1.40000   Max.   :94.77   Max.   :-26.9  

   euribor3m      nr.employed     y
 Min.   :0.634   Min.   :4964   no :36548
 1st Qu.:1.344   1st Qu.:5099   yes: 4640
 Median :4.857   Median :5191
 Mean   :3.621   Mean   :5167
 3rd Qu.:4.961   3rd Qu.:5228
 Max.   :5.045   Max.   :5228              

常识告诉我们,虽然123岁的老人存在,但概率也极低,也不太可能是银行的客户
找出在年龄这一列的上离群值和下离群值

> head(bank.dirty[order(bank.dirty$age,decreasing = TRUE),‘age‘,drop=FALSE],n=5)
      age
39494 123
38453  98
38456  98
27827  95
38922  94
> tail(bank.dirty[order(bank.dirty$age,decreasing = TRUE),‘age‘,drop=FALSE],n=5)
      age
37559  17
37580  17
38275  17
120    NA
156    NA

异常值的处理
当作缺失值处理
> bank.dirty$age[which(bank.dirty$age>98)]<-NA
删除或者插补

重编码
职业类型有12个分类,不利于后续分析,把除了unknown以外的分类进行重新编码,简化成4类
Month有12个分类,把它转化成季度
Education的分类,除了unknow之外有7类

进行重编码
levels(bank.dirty$job) <- c( "management","services","entrepreneur","entrepreneur",
                        "management","unemployed",  "entrepreneur","services",
                        "unemployed","services","unemployed","unknown" )
> levels(bank.dirty$month) <- c("Q2","Q3","Q4","Q3","Q2",
                         "Q1","Q2","Q4","Q4","Q3")
>
> levels(bank.dirty$education) <- c( "primary","primary","primary","secondary",
                              "primary","tertiary","tertiary","unknown")

缺失值
分类较多,分类是unknown,不能给我们提供信息
有些模型不能处理缺失值,比如Logistic回归
缺失值插补的方法
1、    用中位数或众数插补
> library(imputeMissings)
> bank.clean<-impute(bank.dirty,object = compute(bank.dirty,method = "median/mode"))
2、    最邻近(knn)插补
library(DMwR)
bank.clean=knnImputation(bank.dirty,k=5)

3、    随机森林插补
library(missForest)
 Imp = missForest(bank.dirty)
 bank.clean = Imp$ximp

缺失值插补的R包
1、    imputeMissings包
2、    DMwR包

用Logistic回归建立客户响应模型
1、    广义线性模型
广义线性模型擅长于处理因变量不是连续变量的问题
1)    Y是分类变量
2)    Y是定序变量
3)    Y是离散取值
2、    当Y取值是0-1二分类变量是,就是Logistic回归

Logistic回归在R中的实现
数据重编码
bank$y=ifelse(bank$y==‘yes‘,1,0)
改成以Q1为参考因子
bank$month<-relevel(bank$month,ref="Q1")
构建Logistic回归模型
> model<-glm(y~.,data=bank,family = ‘binomial‘)
> summary(model)

Call:
glm(formula = y ~ ., family = "binomial", data = bank)

Deviance Residuals:
    Min       1Q   Median       3Q      Max
-5.9958  -0.3082  -0.1887  -0.1333   3.4283  

Coefficients: (1 not defined because of singularities)
                               Estimate Std. Error z value Pr(>|z|)
(Intercept)                  -1.957e+02  1.935e+01 -10.116  < 2e-16 ***
age                           1.851e-03  2.415e-03   0.767 0.443289
jobblue-collar               -2.659e-01  7.942e-02  -3.348 0.000814 ***
jobentrepreneur              -2.029e-01  1.248e-01  -1.626 0.103924
jobhousemaid                 -3.628e-02  1.475e-01  -0.246 0.805705
jobmanagement                -8.054e-02  8.501e-02  -0.947 0.343423
jobretired                    2.928e-01  1.067e-01   2.743 0.006092 **
jobself-employed             -1.680e-01  1.176e-01  -1.428 0.153332
jobservices                  -1.497e-01  8.552e-02  -1.751 0.079969 .
jobstudent                    2.674e-01  1.106e-01   2.416 0.015680 *
jobtechnician                 3.462e-03  7.096e-02   0.049 0.961086
jobunemployed                 8.514e-03  1.273e-01   0.067 0.946686
jobunknown                   -8.046e-02  2.390e-01  -0.337 0.736420
maritalmarried                1.567e-02  6.824e-02   0.230 0.818420
maritalsingle                 6.620e-02  7.791e-02   0.850 0.395473
maritalunknown                6.303e-02  4.113e-01   0.153 0.878211
educationbasic.6y             9.647e-02  1.202e-01   0.803 0.422195
educationbasic.9y            -2.154e-02  9.494e-02  -0.227 0.820557
educationhigh.school          3.381e-02  9.188e-02   0.368 0.712895
educationilliterate           1.132e+00  7.395e-01   1.531 0.125887
educationprofessional.course  1.136e-01  1.013e-01   1.121 0.262175
educationuniversity.degree    2.134e-01  9.188e-02   2.322 0.020211 *
educationunknown              1.361e-01  1.196e-01   1.138 0.255314
defaultunknown               -3.055e-01  6.712e-02  -4.552 5.32e-06 ***
defaultyes                   -7.150e+00  1.135e+02  -0.063 0.949784
housingunknown               -7.385e-02  1.390e-01  -0.531 0.595260
housingyes                   -3.740e-03  4.121e-02  -0.091 0.927695
loanunknown                          NA         NA      NA       NA
loanyes                      -6.362e-02  5.725e-02  -1.111 0.266454
contacttelephone             -6.068e-01  7.124e-02  -8.518  < 2e-16 ***
monthQ2                      -2.192e+00  1.125e-01 -19.479  < 2e-16 ***
monthQ3                      -1.463e+00  1.148e-01 -12.747  < 2e-16 ***
monthQ4                      -1.995e+00  1.240e-01 -16.088  < 2e-16 ***
day_of_weekmon               -1.216e-01  6.588e-02  -1.846 0.064887 .
day_of_weekthu                6.375e-02  6.382e-02   0.999 0.317842
day_of_weektue                6.867e-02  6.545e-02   1.049 0.294118
day_of_weekwed                1.436e-01  6.530e-02   2.199 0.027911 *
duration                      4.667e-03  7.397e-05  63.092  < 2e-16 ***
campaign                     -4.543e-02  1.158e-02  -3.922 8.77e-05 ***
pdays                        -9.627e-04  2.162e-04  -4.452 8.50e-06 ***
previous                     -5.806e-02  5.879e-02  -0.988 0.323369
poutcomenonexistent           4.507e-01  9.372e-02   4.809 1.51e-06 ***
poutcomesuccess               9.371e-01  2.106e-01   4.451 8.56e-06 ***
emp.var.rate                 -1.389e+00  7.693e-02 -18.057  < 2e-16 ***
cons.price.idx                1.815e+00  1.193e-01  15.218  < 2e-16 ***
cons.conf.idx                 3.353e-02  6.664e-03   5.033 4.84e-07 ***
euribor3m                     6.054e-02  1.126e-01   0.537 0.590987
nr.employed                   4.937e-03  1.873e-03   2.635 0.008413 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 28999  on 41187  degrees of freedom
Residual deviance: 17199  on 41141  degrees of freedom
AIC: 17293

Number of Fisher Scoring iterations: 10

> exp(coef(model))
                 (Intercept)                          age               jobblue-collar
                9.856544e-86                 1.001853e+00                 7.665077e-01
             jobentrepreneur                 jobhousemaid                jobmanagement
                8.163314e-01                 9.643733e-01                 9.226187e-01
                  jobretired             jobself-employed                  jobservices
                1.340142e+00                 8.453874e-01                 8.609387e-01
                  jobstudent                jobtechnician                jobunemployed
                1.306514e+00                 1.003468e+00                 1.008550e+00
                  jobunknown               maritalmarried                maritalsingle
                9.226922e-01                 1.015789e+00                 1.068445e+00
              maritalunknown            educationbasic.6y            educationbasic.9y
                1.065061e+00                 1.101276e+00                 9.786948e-01
        educationhigh.school          educationilliterate educationprofessional.course
                1.034388e+00                 3.101297e+00                 1.120248e+00
  educationuniversity.degree             educationunknown               defaultunknown
                1.237856e+00                 1.145744e+00                 7.367445e-01
                  defaultyes               housingunknown                   housingyes
                7.851906e-04                 9.288126e-01                 9.962671e-01
                 loanunknown                      loanyes             contacttelephone
                          NA                 9.383587e-01                 5.450980e-01
                     monthQ2                      monthQ3                      monthQ4
                1.116739e-01                 2.314802e-01                 1.360620e-01
              day_of_weekmon               day_of_weekthu               day_of_weektue
                8.854888e-01                 1.065828e+00                 1.071082e+00
              day_of_weekwed                     duration                     campaign
                1.154380e+00                 1.004678e+00                 9.555850e-01
                       pdays                     previous          poutcomenonexistent
                9.990378e-01                 9.435960e-01                 1.569466e+00
             poutcomesuccess                 emp.var.rate               cons.price.idx
                2.552531e+00                 2.493091e-01                 6.140533e+00
               cons.conf.idx                    euribor3m                  nr.employed
                1.034103e+00                 1.062408e+00                 1.004949e+00 

Job变量的基准水平是management,从上面的结果看,服务业和自主劳动者购买银行产品的几率(odds)是管理岗从业人员的0.88倍,未就业人员购买银行产品的几率是管理岗人员的1.25倍

> summary(model.step)
向前逐步回归
> model.step=step(model,direction = "backward")
向后逐步回归
> model.step = step(model, direction = "forward")
双向逐步回归
> model.step = step(model, direction = "both")
> summary(model.step)

Call:
glm(formula = y ~ job + education + default + contact + month +
    day_of_week + duration + campaign + pdays + poutcome + emp.var.rate +
    cons.price.idx + cons.conf.idx + nr.employed, family = "binomial",
    data = bank)

Deviance Residuals:
    Min       1Q   Median       3Q      Max
-5.9884  -0.3088  -0.1887  -0.1332   3.4026  

Coefficients:
                               Estimate Std. Error z value Pr(>|z|)
(Intercept)                  -2.031e+02  1.426e+01 -14.246  < 2e-16 ***
jobblue-collar               -2.700e-01  7.917e-02  -3.411 0.000648 ***
jobentrepreneur              -2.043e-01  1.242e-01  -1.645 0.100003
jobhousemaid                 -2.832e-02  1.464e-01  -0.193 0.846590
jobmanagement                -8.368e-02  8.409e-02  -0.995 0.319670
jobretired                    3.234e-01  9.130e-02   3.542 0.000397 ***
jobself-employed             -1.670e-01  1.176e-01  -1.421 0.155435
jobservices                  -1.528e-01  8.545e-02  -1.789 0.073666 .
jobstudent                    2.682e-01  1.046e-01   2.565 0.010316 *
jobtechnician                 4.389e-03  7.093e-02   0.062 0.950665
jobunemployed                 8.975e-03  1.271e-01   0.071 0.943715
jobunknown                   -6.363e-02  2.378e-01  -0.268 0.789057
educationbasic.6y             8.993e-02  1.196e-01   0.752 0.452024
educationbasic.9y            -2.716e-02  9.416e-02  -0.288 0.772992
educationhigh.school          2.890e-02  9.053e-02   0.319 0.749573
educationilliterate           1.118e+00  7.398e-01   1.511 0.130744
educationprofessional.course  1.084e-01  1.004e-01   1.079 0.280686
educationuniversity.degree    2.103e-01  9.017e-02   2.332 0.019678 *
educationunknown              1.363e-01  1.195e-01   1.140 0.254110
defaultunknown               -3.017e-01  6.666e-02  -4.526 6.02e-06 ***
defaultyes                   -7.141e+00  1.135e+02  -0.063 0.949831
contacttelephone             -6.011e-01  7.069e-02  -8.504  < 2e-16 ***
monthQ2                      -2.210e+00  1.108e-01 -19.939  < 2e-16 ***
monthQ3                      -1.475e+00  1.146e-01 -12.869  < 2e-16 ***
monthQ4                      -1.982e+00  1.183e-01 -16.755  < 2e-16 ***
day_of_weekmon               -1.210e-01  6.584e-02  -1.837 0.066174 .
day_of_weekthu                6.208e-02  6.374e-02   0.974 0.330066
day_of_weektue                6.851e-02  6.538e-02   1.048 0.294651
day_of_weekwed                1.420e-01  6.525e-02   2.176 0.029592 *
duration                      4.667e-03  7.396e-05  63.099  < 2e-16 ***
campaign                     -4.587e-02  1.158e-02  -3.960 7.49e-05 ***
pdays                        -8.822e-04  2.024e-04  -4.358 1.31e-05 ***
poutcomenonexistent           5.219e-01  6.356e-02   8.211  < 2e-16 ***
poutcomesuccess               9.996e-01  2.028e-01   4.928 8.31e-07 ***
emp.var.rate                 -1.376e+00  6.885e-02 -19.980  < 2e-16 ***
cons.price.idx                1.845e+00  1.041e-01  17.725  < 2e-16 ***
cons.conf.idx                 3.622e-02  4.853e-03   7.464 8.42e-14 ***
nr.employed                   5.883e-03  9.765e-04   6.024 1.70e-09 ***
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

    Null deviance: 28999  on 41187  degrees of freedom
Residual deviance: 17203  on 41150  degrees of freedom
AIC: 17279

Number of Fisher Scoring iterations: 10

模型预测
用predict函数,参数type=’response’
Newdata参数是要预测的数据集

> prob<-predict(model.step,type = ‘response‘)
> head(prob)
          1           2           3           4           5           6
0.015029328 0.006044212 0.011640349 0.010173952 0.016897254 0.007174804 

假设以0.5为临界值
> pre<-ifelse(prob>0.5,1,0)
> table(pre,bank$y)

pre     0     1
  0 35596  2667
  1   952  1973

> 

预测的准确率
> (35592+1964)/(35592+2676+956+1964)
[1] 0.911819

实际有响应的客户被识别出了多少
> 1964/(1964+2676)
[1] 0.4232759

模型评估

> confusionMatrix(bank$y,pre,pos=‘1‘)
Confusion Matrix and Statistics

          Reference
Prediction     0     1
         0 35596   952
         1  2667  1973

               Accuracy : 0.9121
                 95% CI : (0.9094, 0.9149)
    No Information Rate : 0.929
    P-Value [Acc > NIR] : 1               

                  Kappa : 0.476
 Mcnemar‘s Test P-Value : <2e-16          

            Sensitivity : 0.67453
            Specificity : 0.93030
         Pos Pred Value : 0.42522
         Neg Pred Value : 0.97395
             Prevalence : 0.07102
         Detection Rate : 0.04790
   Detection Prevalence : 0.11265
      Balanced Accuracy : 0.80241         

       ‘Positive‘ Class : 1               

Kappa 统计量(kappa statistic)
用于评判分类器的分类结果与随机分类的差异度
用Kappa统计量评价:
    较差:小于0.20
    一般:0.20至0.40
    稳健:0.40至0.60
    好的:0.60至0.80
很好的:0.80至1.00

ROC曲线
pred<-prediction(prob,bank$y)
perf<-performance(pred,measure = "tpr",x="fpr")
plot(perf)

RandomForest
加载数据列

> data=read.table("input.txt",header = TRUE)
> str(data)
‘data.frame‘:    222 obs. of  23 variables:
 $ Acti_Profile             : num  0 0 0 0 0 0 0 0 0 0 ...
 $ Activity                 : num  1.25 0 0.938 6.562 0 ...
 $ Diastolic_PTT            : num  256 240 253 0 241 ...
 $ Diastolic                : num  73.2 78.6 74 0 78.4 ...
 $ Heart_Rate_Curve         : num  81.2 69.7 77.6 95 83.6 ...
 $ Heart_Rate_Variability_HF: num  131 250 135 144 141 ...
 $ Heart_Rate_Variability_LF: num  311 218 203 301 244 ...
 $ MAP                      : num  86 93.5 86.9 0 91.7 ...
 $ Position                 : num  0 0 0 1 0 0 0 0 0 0 ...
 $ PTT_Raw                  : num  308 288 308 0 295 ...
 $ RR_Interval              : num  734 878 773 632 714 ...
 $ Sleep_Wake               : num  1 1 1 1 1 0 1 1 0 0 ...
 $ SpO2                     : num  0 0 99 0 98.4 ...
 $ Sympatho_Vagal_Balance   : num  23 8.17 14.5 20.4 16.88 ...
 $ Systolic_PTT             : num  308 288 307 0 295 ...
 $ Systolic                 : num  113 124 113 0 119 ...
 $ Autonomic_arousals       : num  0 0 0 0 0 0 0 0 0 0 ...
 $ Cardio_complex           : num  0 0 0 1 0 0 0 0 0 0 ...
 $ Cardio_rhythm            : num  0 0 2 0 0 0 0 0 0 0 ...
 $ Classification_Arousal   : num  0 0 0 0 0 0 0 0 0 0 ...
 $ PTT_Events               : num  1 0 2 0 0 0 0 0 0 0 ...
 $ Systolic_Events          : num  1 0 1 0 0 0 0 0 0 0 ...
 $ y                        : num  1 0 1 0 0 0 0 0 0 0 ...
加载随机森林包
> library(randomForest)
进行训练  以y作为因变量,其余数据作为自变量
> rf <- randomForest(y ~ ., data=data, ntree=100, proximity=TRUE,importance=TRUE)
> plot(rf)

重要性检测
衡量把一个变量的取值变为随机数,随机森林预测准确性的降低程度
> importance(rf,type=1)
                              %IncMSE
Acti_Profile               0.00000000
Activity                   0.99353251
Diastolic_PTT              0.32193611
Diastolic                  1.99891809
Heart_Rate_Curve           0.92001352
Heart_Rate_Variability_HF  2.07870722
Heart_Rate_Variability_LF -0.24957163
MAP                        0.48142975
Position                   1.86876751
PTT_Raw                    1.94648914
RR_Interval                0.60557964
Sleep_Wake                 1.00503782
SpO2                       0.25396165
Sympatho_Vagal_Balance     1.42906765
Systolic_PTT               1.27965813
Systolic                   0.77382673
Autonomic_arousals         0.00000000
Cardio_complex             1.00503782
Cardio_rhythm              1.14283152
Classification_Arousal    -0.04383997
PTT_Events                 4.63980680
Systolic_Events           33.29461169

输出随机森林的模型
> print(rf)

Call:
 randomForest(formula = y ~ ., data = data, ntree = 100, proximity = TRUE,      importance = TRUE)
               Type of random forest: regression
                     Number of trees: 100
No. of variables tried at each split: 7

          Mean of squared residuals: 0.003226897     残差平方和SSE
                    % Var explained: 98.7

>
总平方和(SST):(样本数据-样本均值)的平方和
回归平方和(SSR):(预测数据-样本均值)的平方和
残差平方和(SSE):(样本数据-预测数据均值)的平方和

SST = SSR + SSE   

基尼指数:

> importance(rf,type=2)
                          IncNodePurity
Acti_Profile                0.000000000
Activity                    0.445181480
Diastolic_PTT               0.452221870
Diastolic                   0.449372186
Heart_Rate_Curve            0.473113852
Heart_Rate_Variability_HF   0.226815300
Heart_Rate_Variability_LF   0.205457353
MAP                         0.536977574
Position                    0.307333210
PTT_Raw                     0.656726800
RR_Interval                 0.452738011
Sleep_Wake                  0.014423077
SpO2                        1.793361279
Sympatho_Vagal_Balance      0.352759689
Systolic_PTT                0.851951505
Systolic                    0.823955781
Autonomic_arousals          0.000000000
Cardio_complex              0.008047619
Cardio_rhythm               0.141907084
Classification_Arousal      0.085739429
PTT_Events                  7.468690820
Systolic_Events            39.000163018

>
进行预测
prediction <- predict(rf, data[,],type="response")
输出预测结果
table(observed =data$y,predicted=prediction)
plot(prediction)

支持向量机
library(e1071)
svmfit<-svm(y~.,data=data,kernel="linear",cost=10,scale=FALSE)
> print(svmfit)

Call:
svm(formula = y ~ ., data = data, kernel = "linear", cost = 10, scale = FALSE)

Parameters:
   SVM-Type:  eps-regression
 SVM-Kernel:  linear
       cost:  10
      gamma:  0.04545455
    epsilon:  0.1 

Number of Support Vectors:  20
> plot(svmfit,data)

神经网络

> concrete<-read_excel("Concrete_Data.xls")
> str(concrete)
Classes ‘tbl_df’, ‘tbl’ and ‘data.frame‘:    1030 obs. of  9 variables:
 $ Cement      : num  540 540 332 332 199 ...
 $ Slag        : num  0 0 142 142 132 ...
 $ Ash         : num  0 0 0 0 0 0 0 0 0 0 ...
 $ water       : num  162 162 228 228 192 228 228 228 228 228 ...
 $ superplastic: num  2.5 2.5 0 0 0 0 0 0 0 0 ...
 $ coarseagg   : num  1040 1055 932 932 978 ...
 $ fineagg     : num  676 676 594 594 826 ...
 $ age         : num  28 28 270 365 360 90 365 28 28 28 ...
 $ strength    : num  80 61.9 40.3 41.1 44.3 ...

> normalize <- function(x){ return ((x-min(x))/(max(x)-min(x)))}
> concrete_norm <- as.data.frame(lapply(concrete,normalize))

> concrete_train <- concrete_norm[1:773,]
> concrete_test <- concrete_norm[774:1030,]

> library(neuralnet)
> concrete_model <- neuralnet(strength ~ Cement+Slag+Ash+water+superplastic+coarseagg+fineagg+age,data=concrete_train)
> plot(concrete_model)

model_results <- compute(concrete_model,concrete_test[1:8])
predicted_strength <- model_results$net.result
> cor(predicted_strength,concrete_test$strength)
             [,1]
[1,] 0.7205120076
> concrete_model2 <- neuralnet(strength ~ Cement+Slag+Ash+water+superplastic+coarseagg+fineagg+age,data=concrete_train,hidden=5)
> plot(concrete_model2)

计算误差
> model_results2 <- compute(concrete_model2,concrete_test[1:8])
> predicted_strength2 <- model_results2$net.result
> cor(predicted_strength2,concrete_test$strength)
             [,1]
[1,] 0.6727155609

> 

主成分分析
身高、体重、胸围、坐高
> test<-data.frame(
+     X1=c(148, 139, 160, 149, 159, 142, 153, 150, 151, 139,
+          140, 161, 158, 140, 137, 152, 149, 145, 160, 156,
+          151, 147, 157, 147, 157, 151, 144, 141, 139, 148),
+     X2=c(41, 34, 49, 36, 45, 31, 43, 43, 42, 31,
+          29, 47, 49, 33, 31, 35, 47, 35, 47, 44,
+          42, 38, 39, 30, 48, 36, 36, 30, 32, 38),
+     X3=c(72, 71, 77, 67, 80, 66, 76, 77, 77, 68,
+          64, 78, 78, 67, 66, 73, 82, 70, 74, 78,
+          73, 73, 68, 65, 80, 74, 68, 67, 68, 70),
+     X4=c(78, 76, 86, 79, 86, 76, 83, 79, 80, 74,
+          74, 84, 83, 77, 73, 79, 79, 77, 87, 85,
+          82, 78, 80, 75, 88, 80, 76, 76, 73, 78)
+ )
> test.pr<-princomp(test,cor=TRUE)
> summary(test.pr,loadings=TRUE)
Importance of components:
                             Comp.1        Comp.2        Comp.3        Comp.4
Standard deviation     1.8817805390 0.55980635717 0.28179594325 0.25711843909
Proportion of Variance 0.8852744993 0.07834578938 0.01985223841 0.01652747293
Cumulative Proportion  0.8852744993 0.96362028866 0.98347252707 1.00000000000

Loadings:
   Comp.1 Comp.2 Comp.3 Comp.4
X1  0.497  0.543 -0.450  0.506
X2  0.515 -0.210 -0.462 -0.691
X3  0.481 -0.725  0.175  0.461
X4  0.507  0.368  0.744 -0.232

前两个主成分的累计贡献率已经达到96% 可以舍去另外两个主成分 达到降维的目的
因此可以得到函数表达式 Z1=-0.497X‘1-0.515X‘2-0.481X‘3-0.507X‘4
                                       Z2=  0.543X‘1-0.210X‘2-0.725X‘3-0.368X‘4
4.画主成分的碎石图并预测

> screeplot(test.pr,type="lines")
> p<-predict(test.pr)
> p
              Comp.1         Comp.2         Comp.3          Comp.4
 [1,] -0.06990949737 -0.23813701272 -0.35509247634 -0.266120139417
 [2,] -1.59526339772 -0.71847399061  0.32813232022 -0.118056645885
 [3,]  2.84793151061  0.38956678680 -0.09731731272 -0.279482487139
 [4,] -0.75996988424  0.80604334819 -0.04945721875 -0.162949297761
 [5,]  2.73966776853  0.01718087263  0.36012614873  0.358653043787
 [6,] -2.10583167924  0.32284393414  0.18600422367 -0.036456083707
 [7,]  1.42105591247 -0.06053164925  0.21093320662 -0.044223092351
 [8,]  0.82583976981 -0.78102575640 -0.27557797533  0.057288571933
 [9,]  0.93464401954 -0.58469241699 -0.08814135786  0.181037745585
[10,] -2.36463819933 -0.36532199291  0.08840476284  0.045520127461
[11,] -2.83741916086  0.34875841111  0.03310422938 -0.031146930047
[12,]  2.60851223537  0.21278727930 -0.33398036623  0.210157574387
[13,]  2.44253342081 -0.16769495893 -0.46918095412 -0.162987829937
[14,] -1.86630668724  0.05021383642  0.37720280364 -0.358821916178
[15,] -2.81347420580 -0.31790107093 -0.03291329149 -0.222035112399
[16,] -0.06392982655  0.20718447599  0.04334339948  0.703533623798
[17,]  1.55561022242 -1.70439673831 -0.33126406220  0.007551878960
[18,] -1.07392250663 -0.06763418320  0.02283648409  0.048606680158
[19,]  2.52174211878  0.97274300950  0.12164633439 -0.390667990681
[20,]  2.14072377494  0.02217881219  0.37410972458  0.129548959692
[21,]  0.79624421805  0.16307887263  0.12781269571 -0.294140762463
[22,] -0.28708320594 -0.35744666106 -0.03962115883  0.080991988802
[23,]  0.25151075072  1.25555187663 -0.55617324819  0.109068938725
[24,] -2.05706031616  0.78894493512 -0.26552109297  0.388088642937
[25,]  3.08596854773 -0.05775318018  0.62110421208 -0.218939612456
[26,]  0.16367554630  0.04317931667  0.24481850312  0.560248997030
[27,] -1.37265052598  0.02220972121 -0.23378320040 -0.257399715466
[28,] -2.16097778154  0.13733232981  0.35589738735  0.093123683044
[29,] -2.40434826507 -0.48613137190 -0.16154440788 -0.007914021222
[30,] -0.50287467640  0.14734316507 -0.20590831261 -0.122078819188

> 

加载数据

>
w<-read.table("test.prn",header = T)

> w

X.. X...1

1   A    
2

2   B    
3

3   C    
5

4   D    
5

> library(readxl)

>
dat<-read_excel("test.xlsx")

> dat

# A tibble: 4 x 2

`商品` `价格`

<chr> 
<dbl>

1      A     
2

2      B     
3

3      C     
5

4      D     
5

>
bank=read.table("bank-full.csv",header = TRUE,sep=",")

查看数据结构

> str(bank)

‘data.frame‘:  41188 obs. of 
21 variables:

$ age          
: int  56 57 37 40 56 45 59 41 24
25 ...

$ job          
: Factor w/ 12 levels "admin.","blue-collar",..: 4 8
8 1 8 8 1 2 10 8 ...

$ marital      
: Factor w/ 4 levels "divorced","married",..: 2 2 2
2 2 2 2 2 3 3 ...

$ education    
: Factor w/ 8 levels "basic.4y","basic.6y",..: 1 4 4
2 4 3 6 8 6 4 ...

$ default      
: Factor w/ 3 levels "no","unknown",..: 1 2 1 1 1 2
1 2 1 1 ...

$ housing      
: Factor w/ 3 levels "no","unknown",..: 1 1 3 1 1 1
1 1 3 3 ...

$ loan         
: Factor w/ 3 levels "no","unknown",..: 1 1 1 1 3 1
1 1 1 1 ...

$ contact      
: Factor w/ 2 levels "cellular","telephone": 2 2 2 2
2 2 2 2 2 2 ...

$ month        
: Factor w/ 10 levels
"apr","aug","dec",..: 7 7 7 7 7 7 7 7 7 7 ...

$ day_of_week  
: Factor w/ 5 levels "fri","mon","thu",..:
2 2 2 2 2 2 2 2 2 2 ...

$ duration     
: int  261 149 226 151 307 198 139
217 380 50 ...

$ campaign     
: int  1 1 1 1 1 1 1 1 1 1 ...

$ pdays        
: int  999 999 999 999 999 999 999
999 999 999 ...

$ previous     
: int  0 0 0 0 0 0 0 0 0 0 ...

$ poutcome     
: Factor w/ 3 levels "failure","nonexistent",..: 2 2
2 2 2 2 2 2 2 2 ...

$ emp.var.rate 
: num  1.1 1.1 1.1 1.1 1.1 1.1 1.1
1.1 1.1 1.1 ...

$ cons.price.idx: num  94 94 94 94 94 ...

$ cons.conf.idx : num  -36.4 -36.4 -36.4 -36.4 -36.4 -36.4 -36.4
-36.4 -36.4 -36.4 ...

$ euribor3m    
: num  4.86 4.86 4.86 4.86 4.86
...

$ nr.employed  
: num  5191 5191 5191 5191 5191
...

$ y            
: Factor w/ 2 levels "no","yes": 1 1 1 1 1 1 1 1 1 1
...

查看数据的最小值,最大值,中位数,平均数,分位数

> summary(bank)

age                 job            marital

Min.  
:17.00   admin.     :10422  
divorced: 4612

1st Qu.:32.00  
blue-collar: 9254   married
:24928

Median :38.00  
technician : 6743   single  :11568

Mean  
:40.02   services   : 3969  
unknown :   80

3rd Qu.:47.00  
management : 2924

Max.  
:98.00   retired    : 1720

(Other)    : 6156

education        default         housing

university.degree  :12168  
no     :32588   no    
:18622

high.school        : 9515  
unknown: 8597   unknown:  990

basic.9y           : 6045   yes   
:    3   yes   
:21576

professional.course: 5243

basic.4y           : 4176

basic.6y           : 2292

(Other)            : 1749

loan            contact          month       day_of_week

no    
:33950   cellular :26144   may   
:13769   fri:7827

unknown: 
990   telephone:15044   jul   
: 7174   mon:8514

yes    :
6248                     aug    : 6178  
thu:8623

jun    : 5318  
tue:8090

nov    : 4101  
wed:8134

apr    : 2632

(Other):
2016

duration         campaign          pdays

Min.  
:   0.0   Min.  
: 1.000   Min.   : 
0.0

1st Qu.: 102.0   1st Qu.: 1.000   1st Qu.:999.0

Median : 180.0   Median : 2.000   Median :999.0

Mean   :
258.3   Mean   : 2.568  
Mean   :962.5

3rd Qu.: 319.0   3rd Qu.: 3.000   3rd Qu.:999.0

Max.  
:4918.0   Max.   :56.000  
Max.   :999.0

previous            poutcome      emp.var.rate

Min.  
:0.000   failure    : 4252  
Min.   :-3.40000

1st Qu.:0.000  
nonexistent:35563   1st
Qu.:-1.80000

Median :0.000  
success    : 1373   Median : 1.10000

Mean  
:0.173                       Mean   : 0.08189

3rd Qu.:0.000                       3rd Qu.: 1.40000

Max.  
:7.000                      
Max.   : 1.40000

cons.price.idx 
cons.conf.idx     euribor3m

Min.  
:92.20   Min.   :-50.8  
Min.   :0.634

1st Qu.:93.08  
1st Qu.:-42.7   1st Qu.:1.344

Median :93.75  
Median :-41.8   Median :4.857

Mean  
:93.58   Mean   :-40.5  
Mean   :3.621

3rd Qu.:93.99  
3rd Qu.:-36.4   3rd Qu.:4.961

Max.  
:94.77   Max.   :-26.9  
Max.   :5.045

nr.employed     y

Min.  
:4964   no :36548

1st Qu.:5099  
yes: 4640

Median :5191

Mean  
:5167

3rd Qu.:5228

Max.  
:5228

> psych::describe(bank)

方差  个数    平均值  标准差  均值    去掉最大   中位数   最小值  最大值  极差    偏差        峰度

绝对偏差

最小值

之后

的平均数

vars     n   
mean     sd  median trimmed   mad     min    
max   range  skew    kurtosis

age               1 41188   40.02 
10.42   38.00   39.30 
10.38   17.00   98.00  
81.00  0.78     0.79

job*              2 41188    4.72  
3.59    3.00    4.48  
2.97    1.00   12.00  
11.00  0.45    -1.39

marital*          3 41188    2.17  
0.61    2.00    2.21  
0.00    1.00    4.00   
3.00 -0.06    -0.34

education*        4 41188    4.75  
2.14    4.00    4.88  
2.97    1.00    8.00   
7.00 -0.24    -1.21

default*          5 41188    1.21  
0.41    1.00    1.14   0.00   
1.00    3.00    2.00 
1.44     0.07

housing*          6 41188    2.07  
0.99    3.00    2.09  
0.00    1.00    3.00   
2.00 -0.14    -1.95

loan*             7 41188    1.33  
0.72    1.00    1.16  
0.00    1.00    3.00   
2.00  1.82     1.38

contact*          8 41188    1.37  
0.48    1.00    1.33  
0.00    1.00    2.00   
1.00  0.56    -1.69

month*            9 41188    5.23  
2.32    5.00    5.31  
2.97    1.00   10.00   
9.00 -0.31    -1.03

day_of_week*     10 41188   
3.00   1.40    3.00   
3.01   1.48    1.00   
5.00    4.00  0.01   
-1.27

duration         11 41188  258.29 259.28 
180.00  210.61 139.36    0.00 4918.00 4918.00  3.26   
20.24

campaign         12 41188    2.57  
2.77    2.00    1.99  
1.48    1.00   56.00  
55.00  4.76    36.97

pdays            13 41188  962.48 186.91 
999.00  999.00   0.00   
0.00  999.00  999.00 -4.92    22.23

previous         14 41188    0.17  
0.49    0.00    0.05  
0.00    0.00    7.00   
7.00  3.83    20.11

poutcome*        15 41188    1.93  
0.36    2.00    2.00  
0.00    1.00    3.00   
2.00 -0.88     3.98

emp.var.rate     16 41188   
0.08   1.57    1.10   
0.27   0.44   -3.40   
1.40    4.80 -0.72    -1.06

cons.price.idx   17 41188  
93.58   0.58   93.75  
93.58   0.56   92.20  
94.77    2.57 -0.23    -0.83

cons.conf.idx    18 41188 
-40.50   4.63  -41.80 
-40.60   6.52  -50.80 
-26.90   23.90  0.30   
-0.36

euribor3m        19 41188    3.62  
1.73    4.86    3.81  
0.16    0.63    5.04   
4.41 -0.71    -1.41

nr.employed      20 41188 5167.04  72.25 5191.00 5178.43  55.00 4963.60 5228.10  264.50 -1.04     0.00

y*               21 41188    1.11  
0.32    1.00    1.02  
0.00    1.00    2.00   
1.00  2.45     4.00

se

age            0.05

job*           0.02

marital*       0.00

education*     0.01

default*       0.00

housing*       0.00

loan*          0.00

contact*       0.00

month*         0.01

day_of_week*   0.01

duration       1.28

campaign       0.01

pdays          0.92

previous       0.00

poutcome*      0.00

emp.var.rate   0.01

cons.price.idx 0.00

cons.conf.idx  0.02

euribor3m      0.01

nr.employed    0.36

y*             0.00

查看数据是否有缺失值

> sapply(bank,anyNA)

age            job        marital      education

FALSE          FALSE          FALSE          FALSE

default        housing           loan        contact

FALSE          FALSE          FALSE          FALSE

month    day_of_week       duration       campaign

FALSE          FALSE          FALSE          FALSE

pdays       previous      
poutcome   emp.var.rate

FALSE          FALSE          FALSE          FALSE

cons.price.idx  cons.conf.idx      euribor3m    nr.employed

FALSE          FALSE          FALSE          FALSE

y

FALSE

成功与不成功的个数

> table(bank$y)

no  
yes

36548  4640

在是否结婚这个属性的取值与

是否成功的数量比较

> table(bank$y,bank$marital)

divorced married single unknown

no     
4136   22396   9948     
68

yes     
476    2532   1620     
12

> xtabs(~y+marital,data=bank)

marital

y     divorced married single unknown

no     
4136   22396   9948     
68

yes     
476    2532   1620     
12

>
tab=table(bank$y,bank$marital)

> tab

divorced married single unknown

no     
4136   22396   9948     
68

yes     
476    2532   1620     
12

在是否结婚这个属性上的取值

> margin.table(tab,2)

divorced  married  
single  unknown

4612   
24928    11568       80

> margin.table(tab,1)

no  
yes

36548  4640

在是否结婚这个属性上横向看概率

> prop.table(tab,1)

divorced     married      single    
unknown

no 
0.113166247 0.612783189 0.272189997 0.001860567

yes 0.102586207 0.545689655 0.349137931
0.002586207

在是否结婚这个属性上纵向看概率

> prop.table(tab,2)

divorced   married   
single   unknown

no 
0.8967910 0.8984275 0.8599585 0.8500000

yes 0.1032090 0.1015725 0.1400415 0.1500000

平的列联表

以第一列和第二列,展开分类group by 1,2

以col.vars 的取值进行次数统计

>
ftable(bank[,c(3,4,21)],row.vars = 1:2,col.vars = "y")

y   no 
yes

marital  education

divorced basic.4y               406   83

basic.6y               169   13

basic.9y               534   31

high.school           1086 
107

illiterate               1    1

professional.course    596  
61

university.degree     1177 
160

unknown                167   20

married  basic.4y              2915  313

basic.6y              1628  139

basic.9y              3858  298

high.school           4683 
475

illiterate              12    3

professional.course   2799 
357

university.degree     5573 
821

unknown                928  126

single   basic.4y               422   31

basic.6y               301   36

basic.9y              1174  142

high.school           2702 
448

illiterate               1    0

professional.course   1247 
177

university.degree     3723 
683

unknown                378  103

unknown  basic.4y                 5    1

basic.6y                 6    0

basic.9y                 6    2

high.school             13    1

illiterate               0    0

professional.course      6   
0

university.degree       25   
6

unknown                  7    2

卡方检验,在p值小于2.2e-16时,拒绝原假设,认为数据不服从卡方分布

> chisq.test(tab)

Pearson‘s Chi-squared test

data:  tab

X-squared = 122.66, df = 3,
p-value < 2.2e-16

画直方图

> hist(bank$age)

> library(lattice)

画连续变量的分布,就是把直方图的中位数连接起来

以年龄为横轴,y为纵轴,数据是bank,画图,auto.key是否有图例

> densityplot(~age,groups =
y,data=bank,plot.point=FALSE,auto.key = TRUE)

画Box图

> boxplot(age~y,data=bank)

双样本t分布检验,p值小于0.05时拒绝原假设

这里的原假设是两个样本没有相关性

得到的结果是p值为1.805e-06,拒绝两个样本没有相关性的假设

这里认为两个样本有相关性

>
t.test(age~y,data=bank,alternative="two.sided",var.equal=FALSE)

Welch Two Sample t-test

data:  age by y

t = -4.7795, df = 5258.5,
p-value = 1.805e-06

alternative hypothesis: true
difference in means is not equal to 0

95 percent confidence interval:

-1.4129336 -0.5909889

sample estimates:

mean in group no mean in group yes

39.91119          40.91315

数据可视化

画饼图

> tab=table(bank$marital)

> pie(tab)

画直方图

> tab=table(bank$marital)

> barplot(tab)

画下面这个图

> tab=table(bank$marital,bank$y)

> plot(tab)

画层叠直方图

>
tab=table(bank$marital,bank$y)

>
lattice::barchart(tab,auto.key=TRUE)

加载这个包,准备画图

> library(dplyr)

>
data=group_by(bank,marital,y)

> data=tally(data)

!!!!!!!!!!!!!

> ggplot2::ggplot(data=data,mapping=aes(marital,n))+geom_bar(mapping=aes(fill=y),position="dodge",stat="identity")
 
 
 
数据预处理
分组之后再画图

> labels=c(‘青年‘,‘中年‘,‘老年‘)

> bank$age_group=cut(bank$age,breaks = c(0,35,55,100),right = FALSE,labels = labels)

> library(ggplot2)

> ggplot(data=bank,mapping = aes(age_group))+geom_bar(mapping = aes(fill=y),position="dodge",stat="count")

衍生变量
直接使用$符向原数据框添加新的变量

> bank$log.cons.price.idx=log(bank$cons.price.idx)

使用transform函数向原数据框添加变量

> bank<-transform(bank,log.cons.price.idx=log(cons.price.idx),log.nr.employed=log(nr.employed))

使用dplyr包里的mutate函数增加变量

> bank<-dplyr::mutate(bank,log.cons.price.idx=log(cons.price.idx))

使用dplyr包里的transmute函数只保留新生成的变量

> bank2<-dplyr::transmute(bank,log.cons.price.idx=log(cons.price.idx),log.nr.employed=log(nr.employed))

中心化

> v=1:10

> v1=v-mean(v)

> v2=scale(v,center=TRUE,scale = FALSE)

无量纲化

> V1=v/sqrt(sum(v^2)/(length(v)-1))

> v2=scale(v,center=FALSE,scale=TRUE)

根据最大最小值进行归一化

> v3=(v-min(v))/(max(v)-min(v))

进行标准正态化

> v1=(v-mean(v))/sd(v)

> v2=scale(v,center = TRUE,scale=TRUE)

Box-Cox变换

使用car包里的boxCox函数

> install.packages("car")

> library(car)

> boxCox(age~.,data=bank)

使用caret包,做Box-Cox变换

> install.packages("caret")

> library(caret)

> dat<-subset(bank,select="age")

> trans<-preProcess(dat,method=C("BoxCox"))

数据预处理下

违反常识的异常值

基于数据分布的异常值(离群点)识别

bank.dirty=read.csv("bank-dirty.csv")
summary(bank.dirty)
     age                  job            marital                    education    
 Min.   : 17.00   admin.     :10422   divorced: 4612   university.degree  :12165  
 1st Qu.: 32.00   blue-collar: 9254   married :24928   high.school        : 9515  
 Median : 38.00   technician : 6743   single  :11568   basic.9y           : 6043  
 Mean   : 40.03   services   : 3969   NA‘s    :   80   professional.course: 5242  
 3rd Qu.: 47.00   management : 2924                    basic.4y           : 4175  
 Max.   :123.00   (Other)    : 7546                    (Other)            : 2310  
 NA‘s   :2        NA‘s       :  330                    NA‘s               : 1738  
 default      housing        loan            contact          month      
 no  :32588   no  :18622   no  :33950   cellular :26144   may    :13769  
 yes :    3   yes :21576   yes : 6248   telephone:15044   jul    : 7174  
 NA‘s: 8597   NA‘s:  990   NA‘s:  990                     aug    : 6178  
                                                          jun    : 5318  
                                                          nov    : 4101  
                                                          apr    : 2632  
                                                          (Other): 2016  
 day_of_week    duration         campaign          pdays          previous    
 fri:7827    Min.   :   0.0   Min.   : 1.000   Min.   :  0.0   Min.   :0.000  
 mon:8514    1st Qu.: 102.0   1st Qu.: 1.000   1st Qu.:999.0   1st Qu.:0.000  
 thu:8623    Median : 180.0   Median : 2.000   Median :999.0   Median :0.000  
 tue:8090    Mean   : 258.3   Mean   : 2.568   Mean   :962.5   Mean   :0.173  
 wed:8134    3rd Qu.: 319.0   3rd Qu.: 3.000   3rd Qu.:999.0   3rd Qu.:0.000  
             Max.   :4918.0   Max.   :56.000   Max.   :999.0   Max.   :7.000  
                                                                              
        poutcome      emp.var.rate      cons.price.idx  cons.conf.idx  
 failure    : 4252   Min.   :-3.40000   Min.   :92.20   Min.   :-50.8  
 nonexistent:35563   1st Qu.:-1.80000   1st Qu.:93.08   1st Qu.:-42.7  
 success    : 1373   Median : 1.10000   Median :93.75   Median :-41.8  
                     Mean   : 0.08189   Mean   :93.58   Mean   :-40.5  
                     3rd Qu.: 1.40000   3rd Qu.:93.99   3rd Qu.:-36.4  
                     Max.   : 1.40000   Max.   :94.77   Max.   :-26.9  
                                                                       
   euribor3m      nr.employed     y        
 Min.   :0.634   Min.   :4964   no :36548  
 1st Qu.:1.344   1st Qu.:5099   yes: 4640  
 Median :4.857   Median :5191              
 Mean   :3.621   Mean   :5167              
 3rd Qu.:4.961   3rd Qu.:5228              
 Max.   :5.045   Max.   :5228              
 
 

常识告诉我们,虽然123岁的老人存在,但概率也极低,也不太可能是银行的客户

找出在年龄这一列的上离群值和下离群值


> head(bank.dirty[order(bank.dirty$age,decreasing = TRUE),‘age‘,drop=FALSE],n=5)

age

39494 123

38453  98

38456  98

27827  95

38922  94

> tail(bank.dirty[order(bank.dirty$age,decreasing = TRUE),‘age‘,drop=FALSE],n=5)

age

37559  17

37580  17

38275  17

120    NA

156    NA

 

异常值的处理

当作缺失值处理
> bank.dirty$age[which(bank.dirty$age>98)]<-NA

删除或者插补

重编码

职业类型有12个分类,不利于后续分析,把除了unknown以外的分类进行重新编码,简化成4类

Month有12个分类,把它转化成季度

Education的分类,除了unknow之外有7类

进行重编码

levels(bank.dirty$job) <- c( "management","services","entrepreneur","entrepreneur",
                       "management","unemployed",  "entrepreneur","services",
                       "unemployed","services","unemployed","unknown" )
> levels(bank.dirty$month) <- c("Q2","Q3","Q4","Q3","Q2",
                        "Q1","Q2","Q4","Q4","Q3")
> 
> levels(bank.dirty$education) <- c( "primary","primary","primary","secondary",
                             "primary","tertiary","tertiary","unknown")
 
 

缺失值

分类较多,分类是unknown,不能给我们提供信息

有些模型不能处理缺失值,比如Logistic回归

缺失值插补的方法

1、  用中位数或众数插补

> library(imputeMissings)
> bank.clean<-impute(bank.dirty,object = compute(bank.dirty,method = "median/mode"))

2、  最邻近(knn)插补

library(DMwR)
bank.clean=knnImputation(bank.dirty,k=5)

3、  随机森林插补

library(missForest)

Imp = missForest(bank.dirty)

bank.clean = Imp$ximp

缺失值插补的R包

1、  imputeMissings包

2、  DMwR包

用Logistic回归建立客户响应模型

1、广义线性模型

广义线性模型擅长于处理因变量不是连续变量的问题

1)  Y是分类变量

2)  Y是定序变量

3)  Y是离散取值

2、当Y取值是0-1二分类变量是,就是Logistic回归

Logistic回归在R中的实现

数据重编码

bank$y=ifelse(bank$y==‘yes‘,1,0)

改成以Q1为参考因子

bank$month<-relevel(bank$month,ref="Q1")

构建Logistic回归模型

> model<-glm(y~.,data=bank,family = ‘binomial‘)
> summary(model)
 
Call:
glm(formula = y ~ ., family = "binomial", data = bank)
 
Deviance Residuals: 
    Min       1Q   Median       3Q      Max  
-5.9958  -0.3082  -0.1887  -0.1333   3.4283  
 
Coefficients: (1 not defined because of singularities)
                               Estimate Std. Error z value Pr(>|z|)    
(Intercept)                  -1.957e+02  1.935e+01 -10.116  < 2e-16 ***
age                           1.851e-03  2.415e-03   0.767 0.443289    
jobblue-collar               -2.659e-01  7.942e-02  -3.348 0.000814 ***
jobentrepreneur              -2.029e-01  1.248e-01  -1.626 0.103924    
jobhousemaid                 -3.628e-02  1.475e-01  -0.246 0.805705    
jobmanagement                -8.054e-02  8.501e-02  -0.947 0.343423    
jobretired                    2.928e-01  1.067e-01   2.743 0.006092 ** 
jobself-employed             -1.680e-01  1.176e-01  -1.428 0.153332    
jobservices                  -1.497e-01  8.552e-02  -1.751 0.079969 .  
jobstudent                    2.674e-01  1.106e-01   2.416 0.015680 *  
jobtechnician                 3.462e-03  7.096e-02   0.049 0.961086    
jobunemployed                 8.514e-03  1.273e-01   0.067 0.946686    
jobunknown                   -8.046e-02  2.390e-01  -0.337 0.736420    
maritalmarried                1.567e-02  6.824e-02   0.230 0.818420    
maritalsingle                 6.620e-02  7.791e-02   0.850 0.395473    
maritalunknown                6.303e-02  4.113e-01   0.153 0.878211    
educationbasic.6y             9.647e-02  1.202e-01   0.803 0.422195    
educationbasic.9y            -2.154e-02  9.494e-02  -0.227 0.820557    
educationhigh.school          3.381e-02  9.188e-02   0.368 0.712895    
educationilliterate           1.132e+00  7.395e-01   1.531 0.125887    
educationprofessional.course  1.136e-01  1.013e-01   1.121 0.262175    
educationuniversity.degree    2.134e-01  9.188e-02   2.322 0.020211 *  
educationunknown              1.361e-01  1.196e-01   1.138 0.255314    
defaultunknown               -3.055e-01  6.712e-02  -4.552 5.32e-06 ***
defaultyes                   -7.150e+00  1.135e+02  -0.063 0.949784    
housingunknown               -7.385e-02  1.390e-01  -0.531 0.595260    
housingyes                   -3.740e-03  4.121e-02  -0.091 0.927695    
loanunknown                          NA         NA      NA       NA    
loanyes                      -6.362e-02  5.725e-02  -1.111 0.266454    
contacttelephone             -6.068e-01  7.124e-02  -8.518  < 2e-16 ***
monthQ2                      -2.192e+00  1.125e-01 -19.479  < 2e-16 ***
monthQ3                      -1.463e+00  1.148e-01 -12.747  < 2e-16 ***
monthQ4                      -1.995e+00  1.240e-01 -16.088  < 2e-16 ***
day_of_weekmon               -1.216e-01  6.588e-02  -1.846 0.064887 .  
day_of_weekthu                6.375e-02  6.382e-02   0.999 0.317842    
day_of_weektue                6.867e-02  6.545e-02   1.049 0.294118    
day_of_weekwed                1.436e-01  6.530e-02   2.199 0.027911 *  
duration                      4.667e-03  7.397e-05  63.092  < 2e-16 ***
campaign                     -4.543e-02  1.158e-02  -3.922 8.77e-05 ***
pdays                        -9.627e-04  2.162e-04  -4.452 8.50e-06 ***
previous                     -5.806e-02  5.879e-02  -0.988 0.323369    
poutcomenonexistent           4.507e-01  9.372e-02   4.809 1.51e-06 ***
poutcomesuccess               9.371e-01  2.106e-01   4.451 8.56e-06 ***
emp.var.rate                 -1.389e+00  7.693e-02 -18.057  < 2e-16 ***
cons.price.idx                1.815e+00  1.193e-01  15.218  < 2e-16 ***
cons.conf.idx                 3.353e-02  6.664e-03   5.033 4.84e-07 ***
euribor3m                     6.054e-02  1.126e-01   0.537 0.590987    
nr.employed                   4.937e-03  1.873e-03   2.635 0.008413 ** 
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 
(Dispersion parameter for binomial family taken to be 1)
 
    Null deviance: 28999  on 41187  degrees of freedom
Residual deviance: 17199  on 41141  degrees of freedom
AIC: 17293
 
Number of Fisher Scoring iterations: 10
> exp(coef(model))
                 (Intercept)                          age               jobblue-collar 
                9.856544e-86                 1.001853e+00                 7.665077e-01 
             jobentrepreneur                 jobhousemaid                jobmanagement 
                8.163314e-01                 9.643733e-01                 9.226187e-01 
                  jobretired             jobself-employed                  jobservices 
                1.340142e+00                 8.453874e-01                 8.609387e-01 
                  jobstudent                jobtechnician                jobunemployed 
                1.306514e+00                 1.003468e+00                 1.008550e+00 
                  jobunknown               maritalmarried                maritalsingle 
                9.226922e-01                 1.015789e+00                 1.068445e+00 
              maritalunknown            educationbasic.6y            educationbasic.9y 
                1.065061e+00                 1.101276e+00                 9.786948e-01 
        educationhigh.school          educationilliterate educationprofessional.course 
                1.034388e+00                 3.101297e+00                 1.120248e+00 
  educationuniversity.degree             educationunknown               defaultunknown 
                1.237856e+00                 1.145744e+00                 7.367445e-01 
                  defaultyes               housingunknown                   housingyes 
                7.851906e-04                 9.288126e-01                 9.962671e-01 
                 loanunknown                      loanyes             contacttelephone 
                          NA                 9.383587e-01                 5.450980e-01 
                     monthQ2                      monthQ3                      monthQ4 
                1.116739e-01                 2.314802e-01                 1.360620e-01 
              day_of_weekmon               day_of_weekthu               day_of_weektue 
                8.854888e-01                 1.065828e+00                 1.071082e+00 
              day_of_weekwed                     duration                     campaign 
                1.154380e+00                 1.004678e+00                 9.555850e-01 
                       pdays                     previous          poutcomenonexistent 
                9.990378e-01                 9.435960e-01                 1.569466e+00 
             poutcomesuccess                 emp.var.rate               cons.price.idx 
                2.552531e+00                 2.493091e-01                 6.140533e+00 
               cons.conf.idx                    euribor3m                  nr.employed 
                1.034103e+00                 1.062408e+00                 1.004949e+00 

Job变量的基准水平是management,从上面的结果看,服务业和自主劳动者购买银行产品的几率(odds)是管理岗从业人员的0.88倍,未就业人员购买银行产品的几率是管理岗人员的1.25倍

> summary(model.step)
向前逐步回归
> model.step=step(model,direction = "backward")
向后逐步回归
> model.step = step(model, direction = "forward")
双向逐步回归
> model.step = step(model, direction = "both")

> summary(model.step)

Call:

glm(formula = y ~ job + education + default + contact + month +

day_of_week + duration + campaign + pdays + poutcome + emp.var.rate +

cons.price.idx + cons.conf.idx + nr.employed, family = "binomial",

data = bank)

Deviance Residuals:

Min       1Q   Median       3Q      Max

-5.9884  -0.3088  -0.1887  -0.1332   3.4026

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept)                  -2.031e+02  1.426e+01 -14.246  < 2e-16 ***

jobblue-collar               -2.700e-01  7.917e-02  -3.411 0.000648 ***

jobentrepreneur              -2.043e-01  1.242e-01  -1.645 0.100003

jobhousemaid                 -2.832e-02  1.464e-01  -0.193 0.846590

jobmanagement                -8.368e-02  8.409e-02  -0.995 0.319670

jobretired                    3.234e-01  9.130e-02   3.542 0.000397 ***

jobself-employed             -1.670e-01  1.176e-01  -1.421 0.155435

jobservices                  -1.528e-01  8.545e-02  -1.789 0.073666 .

jobstudent                    2.682e-01  1.046e-01   2.565 0.010316 *

jobtechnician                 4.389e-03  7.093e-02   0.062 0.950665

jobunemployed                 8.975e-03  1.271e-01   0.071 0.943715

jobunknown                   -6.363e-02  2.378e-01  -0.268 0.789057

educationbasic.6y             8.993e-02  1.196e-01   0.752 0.452024

educationbasic.9y            -2.716e-02  9.416e-02  -0.288 0.772992

educationhigh.school          2.890e-02  9.053e-02   0.319 0.749573

educationilliterate           1.118e+00  7.398e-01   1.511 0.130744

educationprofessional.course  1.084e-01  1.004e-01   1.079 0.280686

educationuniversity.degree    2.103e-01  9.017e-02   2.332 0.019678 *

educationunknown              1.363e-01  1.195e-01   1.140 0.254110

defaultunknown               -3.017e-01  6.666e-02  -4.526 6.02e-06 ***

defaultyes                   -7.141e+00  1.135e+02  -0.063 0.949831

contacttelephone             -6.011e-01  7.069e-02  -8.504  < 2e-16 ***

monthQ2                      -2.210e+00  1.108e-01 -19.939  < 2e-16 ***

monthQ3                      -1.475e+00  1.146e-01 -12.869  < 2e-16 ***

monthQ4                      -1.982e+00  1.183e-01 -16.755  < 2e-16 ***

day_of_weekmon               -1.210e-01  6.584e-02  -1.837 0.066174 .

day_of_weekthu                6.208e-02  6.374e-02   0.974 0.330066

day_of_weektue                6.851e-02  6.538e-02   1.048 0.294651

day_of_weekwed                1.420e-01  6.525e-02   2.176 0.029592 *

duration                      4.667e-03  7.396e-05  63.099  < 2e-16 ***

campaign                     -4.587e-02  1.158e-02  -3.960 7.49e-05 ***

pdays                        -8.822e-04  2.024e-04  -4.358 1.31e-05 ***

poutcomenonexistent           5.219e-01  6.356e-02   8.211  < 2e-16 ***

poutcomesuccess               9.996e-01  2.028e-01   4.928 8.31e-07 ***

emp.var.rate                 -1.376e+00  6.885e-02 -19.980  < 2e-16 ***

cons.price.idx                1.845e+00  1.041e-01  17.725  < 2e-16 ***

cons.conf.idx                 3.622e-02  4.853e-03   7.464 8.42e-14 ***

nr.employed                   5.883e-03  9.765e-04   6.024 1.70e-09 ***

---

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 28999  on 41187  degrees of freedom

Residual deviance: 17203  on 41150  degrees of freedom

AIC: 17279

Number of Fisher Scoring iterations: 10

 
 

模型预测

用predict函数,参数type=’response’

Newdata参数是要预测的数据集

> prob<-predict(model.step,type = ‘response‘)
> head(prob)
          1           2           3           4           5           6 
0.015029328 0.006044212 0.011640349 0.010173952 0.016897254 0.007174804 

假设以0.5为临界值


> pre<-ifelse(prob>0.5,1,0)

> table(pre,bank$y)

pre     0     1

0 35596  2667

1   952  1973

 

>

预测的准确率


> (35592+1964)/(35592+2676+956+1964)

[1] 0.911819

 
 

实际有响应的客户被识别出了多少

> 1964/(1964+2676)
[1] 0.4232759

模型评估

> confusionMatrix(bank$y,pre,pos=‘1‘)
Confusion Matrix and Statistics
 
          Reference
Prediction     0     1
         0 35596   952
         1  2667  1973
                                          
               Accuracy : 0.9121          
                 95% CI : (0.9094, 0.9149)
    No Information Rate : 0.929           
    P-Value [Acc > NIR] : 1               
                                          
                  Kappa : 0.476           
 Mcnemar‘s Test P-Value : <2e-16          
                                          
            Sensitivity : 0.67453         
            Specificity : 0.93030         
         Pos Pred Value : 0.42522         
         Neg Pred Value : 0.97395         
             Prevalence : 0.07102         
         Detection Rate : 0.04790         
   Detection Prevalence : 0.11265         
      Balanced Accuracy : 0.80241         
                                          
       ‘Positive‘ Class : 1               
                                    

Kappa 统计量(kappa statistic)

用于评判分类器的分类结果与随机分类的差异度

用Kappa统计量评价:

较差:小于0.20

一般:0.20至0.40

稳健:0.40至0.60

好的:0.60至0.80

很好的:0.80至1.00

ROC曲线

pred<-prediction(prob,bank$y)
perf<-performance(pred,measure = "tpr",x="fpr")
plot(perf)
 
 
 
 
 
 
 
 
 
 
 
 
RandomForest
加载数据列
 

> data=read.table("input.txt",header = TRUE)

> str(data)

‘data.frame‘:  222 obs. of  23 variables:

$ Acti_Profile             : num  0 0 0 0 0 0 0 0 0 0 ...

$ Activity                 : num  1.25 0 0.938 6.562 0 ...

$ Diastolic_PTT            : num  256 240 253 0 241 ...

$ Diastolic                : num  73.2 78.6 74 0 78.4 ...

$ Heart_Rate_Curve         : num  81.2 69.7 77.6 95 83.6 ...

$ Heart_Rate_Variability_HF: num  131 250 135 144 141 ...

$ Heart_Rate_Variability_LF: num  311 218 203 301 244 ...

$ MAP                      : num  86 93.5 86.9 0 91.7 ...

$ Position                 : num  0 0 0 1 0 0 0 0 0 0 ...

$ PTT_Raw                  : num  308 288 308 0 295 ...

$ RR_Interval              : num  734 878 773 632 714 ...

$ Sleep_Wake               : num  1 1 1 1 1 0 1 1 0 0 ...

$ SpO2                     : num  0 0 99 0 98.4 ...

$ Sympatho_Vagal_Balance   : num  23 8.17 14.5 20.4 16.88 ...

$ Systolic_PTT             : num  308 288 307 0 295 ...

$ Systolic                 : num  113 124 113 0 119 ...

$ Autonomic_arousals       : num  0 0 0 0 0 0 0 0 0 0 ...

$ Cardio_complex           : num  0 0 0 1 0 0 0 0 0 0 ...

$ Cardio_rhythm            : num  0 0 2 0 0 0 0 0 0 0 ...

$ Classification_Arousal   : num  0 0 0 0 0 0 0 0 0 0 ...

$ PTT_Events               : num  1 0 2 0 0 0 0 0 0 0 ...

$ Systolic_Events          : num  1 0 1 0 0 0 0 0 0 0 ...

$ y                        : num  1 0 1 0 0 0 0 0 0 0 ...

加载随机森林包

> library(randomForest)

进行训练  以y作为因变量,其余数据作为自变量

> rf <- randomForest(y ~ ., data=data, ntree=100, proximity=TRUE,importance=TRUE)

> plot(rf)

重要性检测

衡量把一个变量的取值变为随机数,随机森林预测准确性的降低程度

> importance(rf,type=1)

%IncMSE

Acti_Profile               0.00000000

Activity                   0.99353251

Diastolic_PTT              0.32193611

Diastolic                  1.99891809

Heart_Rate_Curve           0.92001352

Heart_Rate_Variability_HF  2.07870722

Heart_Rate_Variability_LF -0.24957163

MAP                        0.48142975

Position                   1.86876751

PTT_Raw                    1.94648914

RR_Interval                0.60557964

Sleep_Wake                 1.00503782

SpO2                       0.25396165

Sympatho_Vagal_Balance     1.42906765

Systolic_PTT               1.27965813

Systolic                   0.77382673

Autonomic_arousals         0.00000000

Cardio_complex             1.00503782

Cardio_rhythm              1.14283152

Classification_Arousal    -0.04383997

PTT_Events                 4.63980680

Systolic_Events           33.29461169

输出随机森林的模型


> print(rf)

Call:

randomForest(formula = y ~ ., data = data, ntree = 100, proximity = TRUE,      importance = TRUE)

Type of random forest: regression

Number of trees: 100

No. of variables tried at each split: 7

Mean of squared residuals: 0.003226897     残差平方和SSE

% Var explained: 98.7

 

>

总平方和(SST):(样本数据-样本均值)的平方和

回归平方和(SSR):(预测数据-样本均值)的平方和

残差平方和(SSE):(样本数据-预测数据均值)的平方和

SST = SSR + SSE 

基尼指数:


> importance(rf,type=2)

IncNodePurity

Acti_Profile                0.000000000

Activity                    0.445181480

Diastolic_PTT               0.452221870

Diastolic                   0.449372186

Heart_Rate_Curve            0.473113852

Heart_Rate_Variability_HF   0.226815300

Heart_Rate_Variability_LF   0.205457353

MAP                         0.536977574

Position                    0.307333210

PTT_Raw                     0.656726800

RR_Interval                 0.452738011

Sleep_Wake                  0.014423077

SpO2                        1.793361279

Sympatho_Vagal_Balance      0.352759689

Systolic_PTT                0.851951505

Systolic                    0.823955781

Autonomic_arousals          0.000000000

Cardio_complex              0.008047619

Cardio_rhythm               0.141907084

Classification_Arousal      0.085739429

PTT_Events                  7.468690820

Systolic_Events            39.000163018

 

>

进行预测

prediction <- predict(rf, data[,],type="response")

输出预测结果

table(observed =data$y,predicted=prediction)

plot(prediction)

支持向量机

library(e1071)

svmfit<-svm(y~.,data=data,kernel="linear",cost=10,scale=FALSE)

> print(svmfit)

Call:

svm(formula = y ~ ., data = data, kernel = "linear", cost = 10, scale = FALSE)

Parameters:

SVM-Type:  eps-regression

SVM-Kernel:  linear

cost:  10

gamma:  0.04545455

epsilon:  0.1

Number of Support Vectors:  20

> plot(svmfit,data)

 

神经网络

> concrete<-read_excel("Concrete_Data.xls")

> str(concrete)

Classes ‘tbl_df’, ‘tbl’ and ‘data.frame‘:    1030 obs. of  9 variables:

$ Cement      : num  540 540 332 332 199 ...

$ Slag        : num  0 0 142 142 132 ...

$ Ash         : num  0 0 0 0 0 0 0 0 0 0 ...

$ water       : num  162 162 228 228 192 228 228 228 228 228 ...

$ superplastic: num  2.5 2.5 0 0 0 0 0 0 0 0 ...

$ coarseagg   : num  1040 1055 932 932 978 ...

$ fineagg     : num  676 676 594 594 826 ...

$ age         : num  28 28 270 365 360 90 365 28 28 28 ...

$ strength    : num  80 61.9 40.3 41.1 44.3 ...

> normalize <- function(x){ return ((x-min(x))/(max(x)-min(x)))}

> concrete_norm <- as.data.frame(lapply(concrete,normalize))

> concrete_train <- concrete_norm[1:773,]

> concrete_test <- concrete_norm[774:1030,]

> library(neuralnet)

> concrete_model <- neuralnet(strength ~ Cement+Slag+Ash+water+superplastic+coarseagg+fineagg+age,data=concrete_train)

> plot(concrete_model)

model_results <- compute(concrete_model,concrete_test[1:8])

predicted_strength <- model_results$net.result

> cor(predicted_strength,concrete_test$strength)

[,1]

[1,] 0.7205120076

> concrete_model2 <- neuralnet(strength ~ Cement+Slag+Ash+water+superplastic+coarseagg+fineagg+age,data=concrete_train,hidden=5)

> plot(concrete_model2)

计算误差


> model_results2 <- compute(concrete_model2,concrete_test[1:8])

> predicted_strength2 <- model_results2$net.result

> cor(predicted_strength2,concrete_test$strength)

[,1]

[1,] 0.6727155609

 

>

主成分分析

身高、体重、胸围、坐高

> test<-data.frame(

+     X1=c(148, 139, 160, 149, 159, 142, 153, 150, 151, 139,

+          140, 161, 158, 140, 137, 152, 149, 145, 160, 156,

+          151, 147, 157, 147, 157, 151, 144, 141, 139, 148),

+     X2=c(41, 34, 49, 36, 45, 31, 43, 43, 42, 31,

+          29, 47, 49, 33, 31, 35, 47, 35, 47, 44,

+          42, 38, 39, 30, 48, 36, 36, 30, 32, 38),

+     X3=c(72, 71, 77, 67, 80, 66, 76, 77, 77, 68,

+          64, 78, 78, 67, 66, 73, 82, 70, 74, 78,

+          73, 73, 68, 65, 80, 74, 68, 67, 68, 70),

+     X4=c(78, 76, 86, 79, 86, 76, 83, 79, 80, 74,

+          74, 84, 83, 77, 73, 79, 79, 77, 87, 85,

+          82, 78, 80, 75, 88, 80, 76, 76, 73, 78)

+ )

> test.pr<-princomp(test,cor=TRUE)

> summary(test.pr,loadings=TRUE)

Importance of components:

Comp.1        Comp.2        Comp.3        Comp.4

Standard deviation     1.8817805390 0.55980635717 0.28179594325 0.25711843909

Proportion of Variance 0.8852744993 0.07834578938 0.01985223841 0.01652747293

Cumulative Proportion  0.8852744993 0.96362028866 0.98347252707 1.00000000000

Loadings:

Comp.1 Comp.2 Comp.3 Comp.4

X1  0.497  0.543 -0.450  0.506

X2  0.515 -0.210 -0.462 -0.691

X3  0.481 -0.725  0.175  0.461

X4  0.507  0.368  0.744 -0.232

前两个主成分的累计贡献率已经达到96% 可以舍去另外两个主成分达到降维的目的

因此可以得到函数表达式 Z1=-0.497X‘1-0.515X‘2-0.481X‘3-0.507X‘4

Z2=  0.543X‘1-0.210X‘2-0.725X‘3-0.368X‘4

4.画主成分的碎石图并预测

> screeplot(test.pr,type="lines")

> p<-predict(test.pr)


> p

Comp.1         Comp.2         Comp.3          Comp.4

[1,] -0.06990949737 -0.23813701272 -0.35509247634 -0.266120139417

[2,] -1.59526339772 -0.71847399061  0.32813232022 -0.118056645885

[3,]  2.84793151061  0.38956678680 -0.09731731272 -0.279482487139

[4,] -0.75996988424  0.80604334819 -0.04945721875 -0.162949297761

[5,]  2.73966776853  0.01718087263  0.36012614873  0.358653043787

[6,] -2.10583167924  0.32284393414  0.18600422367 -0.036456083707

[7,]  1.42105591247 -0.06053164925  0.21093320662 -0.044223092351

[8,]  0.82583976981 -0.78102575640 -0.27557797533  0.057288571933

[9,]  0.93464401954 -0.58469241699 -0.08814135786  0.181037745585

[10,] -2.36463819933 -0.36532199291  0.08840476284  0.045520127461

[11,] -2.83741916086  0.34875841111  0.03310422938 -0.031146930047

[12,]  2.60851223537  0.21278727930 -0.33398036623  0.210157574387

[13,]  2.44253342081 -0.16769495893 -0.46918095412 -0.162987829937

[14,] -1.86630668724  0.05021383642  0.37720280364 -0.358821916178

[15,] -2.81347420580 -0.31790107093 -0.03291329149 -0.222035112399

[16,] -0.06392982655  0.20718447599  0.04334339948  0.703533623798

[17,]  1.55561022242 -1.70439673831 -0.33126406220  0.007551878960

[18,] -1.07392250663 -0.06763418320  0.02283648409  0.048606680158

[19,]  2.52174211878  0.97274300950  0.12164633439 -0.390667990681

[20,]  2.14072377494  0.02217881219  0.37410972458  0.129548959692

[21,]  0.79624421805  0.16307887263  0.12781269571 -0.294140762463

[22,] -0.28708320594 -0.35744666106 -0.03962115883  0.080991988802

[23,]  0.25151075072  1.25555187663 -0.55617324819  0.109068938725

[24,] -2.05706031616  0.78894493512 -0.26552109297  0.388088642937

[25,]  3.08596854773 -0.05775318018  0.62110421208 -0.218939612456

[26,]  0.16367554630  0.04317931667  0.24481850312  0.560248997030

[27,] -1.37265052598  0.02220972121 -0.23378320040 -0.257399715466

[28,] -2.16097778154  0.13733232981  0.35589738735  0.093123683044

[29,] -2.40434826507 -0.48613137190 -0.16154440788 -0.007914021222

[30,] -0.50287467640  0.14734316507 -0.20590831261 -0.122078819188

 

>

时间: 2024-10-06 05:06:36

93、R语言教程详解的相关文章

R语言数据结构详解

R有多种存储数据的对象类型.基本的类型可分为: 1.向量 向量中的数据必须拥有相同类型或模式(数值型.字符型.逻辑型):向量类似c语言中的数组:实例:>a<-c(1,2,3,4,5,6)>b<-c(“one”,”two”,”three”)>c<-c(TURE,FALSE,TRUE)标量是指只含一个元素的向量:实例:>e<-3 访问向量中的元素(向量中的元素从1开始,这点与数组不同):>a<-c(1,2,5,7,-5,4) >a[3][1]

SAE上传web应用(包括使用数据库)教程详解及问题解惑

转自:http://blog.csdn.net/baiyuliang2013/article/details/24725995 SAE上传web应用(包括使用数据库)教程详解及问题解惑:       最近由于工作需求,需利用SAE平台,但在使用过程中遇到不少问题,比如如何上传应用,上传应用完毕后打不开,mysql连接不上等等,以及云豆的计费问题,结合个人使用心得,将在本帖一一解答.       1,上传web应用首先,使用SAE平台需要注册自己的账号吧,这个就不说了,然后进入我的首页,会看到: 

c?#?中 ?s?o?c?k?e?t? ?、?T?C?P?C?l?i?e?n?t?、?T?C?P?L?i?s?t?e?n?e?r? ?用?法?详?解

Visual C#.Net网络程序开发-Socket篇 Microsoft.Net Framework为应用程序访问Internet提供了分层的.可扩展的以及受管辖的网络服务,其名字空间System.Net和System.Net.Sockets包含丰富的类可以开发多种网络应用程序..Net类采用的分层结构允许应用程序在不同的控制级别上访问网络,开发人员可以根据需要选择针对不同的级别编制程序,这些级别几乎囊括了Internet的所有需要--从socket套接字到普通的请求/响应,更重要的是,这种分

windows上安装Anaconda和python的教程详解

一提到数字图像处理编程,可能大多数人就会想到matlab,但matlab也有自身的缺点: 1.不开源,价格贵 2.软件容量大.一般3G以上,高版本甚至达5G以上. 3.只能做研究,不易转化成软件. 因此,我们这里使用Python这个脚本语言来进行数字图像处理. 要使用Python,必须先安装python,一般是2.7版本以上,不管是在windows系统,还是Linux系统,安装都是非常简单的. 要使用python进行各种开发和科学计算,还需要安装对应的包.这和matlab非常相似,只是matla

使用ssh开发rest web服务支持http etag header的教程详解

原创整理不易,转载请注明出处:使用ssh开发rest web服务支持http etag header的教程详解 代码下载地址:http://www.zuidaima.com/share/1777391667989504.htm 导言 REST方式的应用程序构架在近日所产生的巨大影响突出了Web应用程序的优雅设计的重要性.现在人们开始理解"WWW架构"内在的可测量性及弹性,并且已经开始探索使用其范例的更好的方式.在本文中,我们将讨论一个Web应用开发工具--"简陋的.卑下的&q

webpack安装配置使用教程详解

webpack安装配置使用教程详解 www.111cn.net 更新:2015-09-01 编辑:swteen 来源:转载 本文章来为各位详细的介绍一下关于webpack安装配置使用教程吧,这篇文章对于不喜欢使用 jspm测试的朋友可以参考一下. webpack 入门 目录 1 安装 webpack2 初始化项目3 webpack 配置4 自动刷新5 第三方库6 模块化7 打包.构建8 webpack 模板我最近大量使用的是 jspm,但因为用它搭建的前端开发环境中,写测试代码非常困难,而项目又

navicat使用教程详解

navicat mysql数据库管理软件 用这个软件来管理mysql数据库 方便快捷,王道之选 来看一下怎么通过 navicat软件来 创建数据库和导入mysql数据库 2 3 4 5 6 7 8 9 10 11 navicat教程 navicat使用教程详解 图文版完毕

彻底搞定C语言指针详解

1.语言中变量的实质 要理解C指针,我认为一定要理解C中“变量”的存储实质, 所以我就从“变量”这个东西开始讲起吧! 先来理解理解内存空间吧!请看下图: 内存地址→ 6 7 8 9 10 11 12 13 ----------------------------------------------------------------- ... | | | | | | | |.. ------------------------------- ---------------------------

11_Shell语言———管道详解

管道的基本用法为: COMMAND1 | COMMAND2 | COMMAND3 | ... COMMAND1 的输出结果会作为输入参数传递给COMMAND2, COMMAND2加以处理后会传递给COMMAND3, 依此类推.管道的使用便是Linux哲学思想中"组合小程序完成复杂任务"的体现方式. 如果管道的最后一个命令是在当前shell的子shell中执行,那么该执行结果不能保存为一个变量,这样会导致当前shell无法获取执行结果,这是由shell中"本地变量只对当前she