目标检测之线段检测---lsd line segment detector

(1)线段检测应用背景

(2)线段检测简介

(3)线段检测实例 a line segment detector

(4)hough 变换和 lsd 的区别

---------------------author:pkf

------------------------------time:2015-1-26

-----------------------------------------qq:1327706646

(1)线段检测应用背景

  线段检测在高铁电机机车顶部图像检测系统中有很大应用,像受电弓检测程序之类的,很有必要,最近也是客户有这个需求,做lsd移植发现的。

http://wenku.baidu.com/link?url=Tsm6xLIA1Dx2VQECCpY8xpMRWm0bcnJ0Ivn_dk4Nb5DcEwPVqOE9pn55sBpHvt8aKqe7s6XLMcyHNLMkJbAn-iqO9uPbVbrkApmGSVqOLf3 机车顶部图像检测系统方案!

http://www.baidu.com/s?ie=utf-8&f=8&rsv_bp=1&rsv_idx=1&tn=baidu&wd=受电弓检测程序&rsv_pq=b0f1b87b000047b9&rsv_t=17eaouGpLbNXKYoRVknb%2B3%2BRaEZADB3lfcGpq7nR%2FQCM9hZcVI2x7vj%2FgaE&rsv_enter=1&inputT=1014&rsv_sug3=4&rsv_n=2&rsv_sug2=0&rsv_sug4=1872

(2)线段检测简介

  

首先,我们需要回顾一下,为什么需要检测图像中的直线段?直线段作为图像中边缘的一种,又有什么特殊之处呢?在Marr关于视觉的计算理论中提到,视觉是一种处理过程,经过这个过程我们能从图像中发现外部世界中有什么东西和它们在什么地方。同时,我们还知道,信息处理具有三个层次:(1)第一个层次是信息处理的计算理论(theory),也就是研究是对什么信息进行计算和为什么要进行这些计算;(2)第二个层次是算法(algorithm),也就是如何进行所需要的计算,或者说是设计算法;(3)第三个层次是实现算法的机制,也就是研究某一算法的特定构成。对于视觉系统,观看图像的过程,也可以看做是信息处理的过程。从图像推理得到物体的形状信息的过程也可以对应为三个阶段:(1)初始简图(primal sketch),这个初始简图可以是轮廓图像,也可以是一堆具有特定意义的特征点构成的掩码,或者是像素的光强等信息;(2)2.5维简图(2.5 dimensional sketch),2.5维简图是对初始简图进行一系列的处理和运算,推导出的一个能反映某些几何特征的表象,它和初始简图都是以观察者为核心;(3)三维模型(3D model)。

那么哪些信息可以用来构造图像的初始简图呢?一个形象的例子是画画。画家速写时,用很少的边,点,线等符号,就可以勾勒出大致的景物。当然,这样的景物与实际景物在人体视网膜上产生的以像素为单位的亮度矩阵式不一样的,但是人们也可以轻松的识别出他们。这说明视觉对图形所做的第一个运算就是把他们转换成一些原始符号构成的描述,这些描述所反映的不止是亮度的绝对值的大小,还有图像中的亮度变化和局部的几何特征。

初始简图是一种基元。它可以由若干边缘段(edge segments),线(line segment),斑点(blob)和端点(terminations)构成,这些杂乱的基元构成的初始简图又被称作未处理的初始简图,当这些基元通过各种方式进行聚合、概括和抽象以形成更大、更加抽象的标记(tokens)时,这样的初始简图又被称为完全的初始简图。

这也就是边缘检测之所以称为图像处理和机器视觉的基本问题的原因。边缘检测的直接目的是寻找未处理的初始简图。它通常寻找图像中亮度变化明显的点,当这些点位置相邻且方向相近时,则构成了边缘中的特殊边缘-直线段。目前流行的直线检测算法主要是霍夫变换,它的优势是不受图像旋转的影响,易于进行几何图像的快速变换。基于霍夫变换的改进方法也很多,其中一个重要的方法是广义霍夫变换,可以用来检测任意形状的曲线。

最简单的霍夫变换是在图像中识别直线。在平面直角坐标系(x-y)中,一条直线可以用方程

表示。对于直线上一个确定的点(,),有

这表示参数平面(k-b)中的一条直线。因此,图像中的一个点对应参数平面中的一条正弦曲线,图像中的一条直线对应参数平面中的一个点。对图像上所有的点作霍夫变换,最终所要检测的直线对应的一定是参数平面中直线相交最多的那个点。这样就在图像中检测出了直线。在实际应用中,直线通常采用参数方程

.

类似的还有检测线段、圆、圆弧、椭圆、矩形等的霍夫变换。

废话了这么多,终于开始回顾LSD了,使用LSD主要是在遥感图像中几何形状明显的目标进行检测时用到。利用LSD,可以快速的检测图像中的直线段,然后根据目标的几何特征设计快速算法,以快速确定疑似目标区域。

LSD的核心是像素合并于误差控制。利用合并像素来检测直线段并不是什么新鲜的方法,但是合并像素的方法通常运算量较大。LSD号称是能在线性时间(linear-time)内得到亚像素级准确度的直线段检测算法。LSD虽然号称不需人工设置任何参数,但是实际使用时,可以设置采样率和判断俩像素是否合并的方向差。我们知道,检测图像中的直线其实就是寻找图像中梯度变化较大的像素。因此,梯度和图像的level-line是LSD提及的两个基本概念。LSD首先计算每一个像素与level-line的夹角以构成一个level-line场。然后,合并这个场里方向近似相同的像素,这样可以得到一系列regions,这些 regions被称为 line support regions。如下图所示。

每一个line support region其实就是一组像素,它也是直线段(line segment)的候选。同时,对于这个line support region,我们可以观察它的最小外接矩形。直观上来讲,当一组像素构成的区域,特别细长时,那么这组像素更加可能是直线段。基于此,作者还统计了line support region的最小外接矩形的主方向。line support region中的一个像素的level-line 角度与最小外接矩形的主方向的角度差在容忍度(tolerance)2τ内的话,那么这个点被称作"aligned point"。作者统计最小外接矩形内的所有像素数和其内的alinedg points数,用来判定这个line support region是否是一个直线段。判定的准则使用的是“a contrario approach”和“Helmholtz principle”方法。在这里,aligned  points的数量是我们感兴趣的信息。因此作者考虑如下假设:aligned points越多,那么region越可能是直线段。对于一副图像i和一个矩形r,记k(i,r)为aligned points的数量,n(r)为矩形r内的总像素数。那么,我们希望能够看到:

其中,Ntest是所有要考虑的矩形的数量。PH0是针对 contrario model H0的一个概率。I是在H0模型下的随机图像。在这篇文章中,作者用H0的模型,主要有以下两个属性:

(1){LLA(j)},其中j是像素,是一由一组随机变量组成;(2)LLA(j)在[0,2π]上均匀分布。

因此,判断一个像素是不是aligned point可以记作概率:

p = τ/π

这样,再通过误差控制,最终的直线段检测算法如下:

在上述算法中,还有两个要点我们没有解释。一是line support region具体是怎么得到了,二是怎样进行误差控制的。

前面我们说过,line support region是通过合并方向近似相同的像素得到。其实在这里,这个合并的过程更多的是依赖于区域生长算法。对于一个level-line 场LLA,种子像素P,和容忍度 τ。我们 可以通过简单的区域生长算法来得到line support region,具体的算法过程参考论文里给出的步骤吧。

至于NFA(the number of false alarms)计算,作者使用如下公式计算:

其中,N和M是采样过后图像的列和行,B(n,k,p)是一个二项分布。n依旧是矩形内所有像素数,k是矩形内的所有p-aligned point数。此处的p-aligned point是指和矩形的主方向在容忍度pπ下方向相同的像素。如果,那么可以认为结果有效。

在实际使用作者的源码时,可以调整lsd函数中的scale来调整图像采样率。此外,合并角度代码里默认是22.5度。图像越小,角度越小,得到的结果越少。不过当图像采样不同时,在同一位置可能得到差异特别大的直线段,这个暂时不知道是什么造成的。

一个比较迷人的结果:

http://blog.csdn.net/polly_yang/article/details/10085401

http://coursegraph.com/category/math

http://blog.csdn.net/polly_yang/article/category/1243538 pgm 公开课

(3)线段检测实例 a line segment detector

有带缩放的高斯下采样,也有1.0的不缩放的检测

http://www.ipol.im/pub/art/2012/gjmr-lsd/?utm_source=doi v1.6

http://blog.csdn.net/tianwaifeimao/article/details/17678669

(4)hough 变换和 lsd 的区别

http://blog.csdn.net/tianwaifeimao/article/details/17678669 各自优缺点

时间: 2024-10-10 04:02:35

目标检测之线段检测---lsd line segment detector的相关文章

【OpenCV入门指南】第七篇 线段检测与圆检测

[OpenCV入门指南]第七篇 线段检测与圆检测 在<[OpenCV入门指南]第五篇轮廓检测上>与<[OpenCV入门指南]第六篇轮廓检测下>讲解了OpenCV的轮廓检测.本篇将讲解在OpenCV中使用线段检测与圆检测. 线段检测与圆检测主要运用Hough变换,Hough变换是一种利用图像的全局特征将特定形状的边缘连接起来,形成连续平滑边缘的一种方法.它通过将源图像上的点影射到用于累加的参数空间,实现对已知解析式曲线进行识别. 在OpenCV编程中,线段检测和圆检测已经封装成函数了

【Rayeager PX2分享】OpenCV入门之线段检测

线段检测主要运用Hough变换,Hough变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等).最基本的霍夫变换是从黑白图像中检测直线(线段). 在OpenCV编程中,实现线段检测主要使用cvHoughLines2函数. 函数原型: CvSeq* cvHoughLines2( CvArr* image, void* line_storage, int method, double rho, doubl

opencv 检测直线 线段 圆 矩形

转自:http://blog.csdn.net/byxdaz/archive/2009/12/01/4912136.aspx 检测直线:cvHoughLines,cvHoughLines2 检测圆:cvHoughCircles 检测矩形:opencv中没有对应的函数,下面有段代码可以检测矩形,是通过先找直线,然后找到直线平行与垂直的四根线. 检测直线代码: /* This is a standalone program. Pass an image name as a first paramet

JavaScript浏览器检测之客户端检测

客户端检测一共分为三种,分别为:能力检测.怪癖检测和用户代理检测,通过这三种检测方案,我们可以充分的了解当前浏览器所处系统.所支持的语法.所具有的特殊性能. 1.能力检测:能力检测又称作为特性检测,检测的目标不是识别特定的浏览器,而是识别浏览器的能力.能力检测不必估计特定的浏览器,只需要确定当前的浏览器是否支持特定的能力,就可以给出可行的解决方案. var width = window.innerWidth; //如果是非 IE 浏览器 if (typeof width != 'number')

unity3d 赛车游戏——复位点检测优化、反向检测、圈数检测、赛道长度计算

接着上一篇文章说 因为代码简短且思路简单 所以我就把这几个功能汇总为一篇文章 因为我之前就是做游戏外挂的 经过验证核实,**飞车的复位点检测.圈数检测就是以下的方法实现的 至于反向检测和赛道长度计算,没去深入研究,不过应该也八九不离十 在告诉大家个小秘密: **飞车的复位点检测和圈数检测利用以下文章中的代码思路可以做出外挂 感兴趣的可以试试!我只是技术交流,不是传播外挂,别打我 复位点检测优化: 首先感谢 @太粗难进 他的原话: “不过 你知道 高架桥么?就是 如果大的轮船经过 会 把 桥 中间

How to determine which grid cells a line segment passes through?

https://cn.mathworks.com/matlabcentral/answers/230155-how-to-determine-which-grid-cells-a-line-segment-passes-through How to determine which grid cells a line segment passes through? Hi, I apologize if this question has been asked before but I have l

paddlepaddle目标检测之水果检测(yolov3_mobilenet_v1)

一.创建项目 (1)进入到https://aistudio.baidu.com/aistudio/projectoverview/public (2)创建项目 点击添加数据集:找到这两个 然后创建即可. 会生成以下项目: 二.启动环境,选择GPU版本 然后会进入到以下界面 选择的两个压缩包在/home/aistudio/data/下,先进行解压: !unzip /home/aistudio/data/data15067/fruit.zip !unzip /home/aistudio/data/d

目标检测之人头---人头检测,安全帽检测,头盔检测,人流检测

大致思路是: 该算法在行人检测算法的基础上,识别检测出来的行人的头部,并根据头部的颜色值,得到该行人所佩戴安全帽的颜色,然后根据生产规范中得到对应人的身份. gabor ,sobel,meanshift http://www.doc88.com/p-8088708062985.html http://www.pudn.com/downloads456/sourcecode/graph/texture_mapping/detail1919552.html 弊端: 这种算法在正确检测行人的前提下,能

【pytorch-ssd目标检测】可视化检测结果

制作类似pascal voc格式的目标检测数据集:https://www.cnblogs.com/xiximayou/p/12546061.html 训练自己创建的数据集:https://www.cnblogs.com/xiximayou/p/12546556.html 验证自己创建的数据集:https://www.cnblogs.com/xiximayou/p/12550471.html 测试自己创建的数据集:https://www.cnblogs.com/xiximayou/p/125505