4、0-1背包问题

背包问题

对于0-1背包问题,由于我们对一个商品只有两种选择:要或者不要。于是我们的背包问题不是一个贪心算法问题,很简单

如果选用贪心算法,我们肯定是决定选用“商品单位重量价值最高“,如下面的例子则相反了

如上图中有3种商品的价值以及重量,背包容量为50.

那么如果选用贪心算法,则商品1的单位重量价值最高为60/10=6.

而商品2和商品3的分别为100/20和120/30为5和4.肯定不行,但是如果选用商品1,则2和3只能选一个

但是如果选用商品2和3,则:

于是,我们可以看到,选2和3的总价值高于选用1和其它的组合。

这是因为你选商品1和其它的组合后总是会浪费背包的一些空间,而商品2和3的组合却能够充分利用背包的容量。

结论:0-1背包问题是一个动态规划问题,而不是贪心算法问题。

主体函数代码如下:

  1. void packageProb(int packageCap,int valueSum,int *productWeight,int *productValue,int *flag,int Len){
  2. int i;
  3. std::cout<<valueSum<<std::endl;
  4. for(i=0;i<Len; i++){
  5. int flag_f[3]={0};
  6. int packageC=packageCap;
  7. int valueS=valueSum;
  8. for(int j=0;j<3; j++){
  9. flag_f[j]=flag[j];
  10. }
  11. if(packageC>=productWeight[i]&&!flag[i]){
  12. int packageCC=packageCap-productWeight[i];
  13. int valueSS=valueS+productValue[i];
  14. flag_f[i]=1;
  15. for(int i=0;i<Len; i++){
  16. if(flag_f[i])
  17. std::cout<<i<<std::endl;
  18. }
  19. std::cout<<valueSS<<std::endl;
  20. std::cout<<std::endl;
  21. packageProb(packageCC,valueSS,productWeight,productValue,flag_f,Len);
  22. }
  23. }
  24. }

测试代码如下:

  1. int productWeight[3]={10,20,30};
  2. int productValue[3]={60,100,120};
  3. int flag[3]={0};
  4. packageProb(50,0,productWeight,productValue,flag,3);

如上面代码所以,对于递归问题,我们一定要知道每次向下递归的时候,程序的栈只会保存一些函数的局部变量和返回地址空间等信息,

不会保存调用参数中的值,调用参数是会在每次递归中是会跟着变的。

来自为知笔记(Wiz)

时间: 2024-10-26 16:05:59

4、0-1背包问题的相关文章

背包问题:0/1背包问题 普通背包问题(贪心算法只适用于普通背包问题)

//sj和vj分别为第j项物品的体积和价值,W是总体积限制. //V[i,j]表示从前i项{u1,u2,…,un}中取出来的装入体积为j的背包的物品的最大价值. 第一种:0/1背包问题 最大化 ,受限于  1)若i=0或j=0,  V[i,j] = 0 2)若j<si, V[i,j] = V[i-1,j] 3)若i>0且j>=si, V[i,j] = Max{V[i-1,j],V[i-1,j-si]+vi} 第二种:背包问题:在选择物品i装入背包时,可以选择物品i的一部分,而不一定要全部

0/1背包问题(回溯法)

回溯法是一个既带有系统性又带有跳跃性的搜索算法.它在包含问题的所有解的解空间树中,按深度优先策略,从根结点出发搜索解空间树.算法搜索至解空间树的任意一结点时,先判断该结点是否包含问题的解.如果肯定不包含,则跳过对该结点为根的子树搜索,逐层向其祖先结点回溯:否则 ,进入该子树,继续按深度优先策略搜索. 问题的解空间 用回溯法解问题时,应明确定义问题的解空间.问题的解空间至少包含问题的一个(最优)解.对于 n=3 时的 0/1 背包问题,可用一棵完全二叉树表示解空间,如图所示: 求解步骤 1)针对所

0/1背包问题的动态规划法求解 —— Java 实现

0/1背包问题的动态规划法求解,前人之述备矣,这里所做的工作,不过是自己根据理解实现了一遍,主要目的还是锻炼思维和编程能力,同时,也是为了增进对动态规划法机制的理解和掌握. 值得提及的一个问题是,在用 JAVA 实现时, 是按算法模型建模,还是用对象模型建模呢? 如果用算法模型,那么 背包的值.重量就直接存入二个数组里:如果用对象模型,则要对背包以及背包问题进行对象建模.思来想去,还是采用了对象模型,尽管心里感觉算法模型似乎更好一些.有时确实就是这样,对象模型虽然现在很主流,但也不是万能的,采用

动态规划算法实现部分——0/1背包问题

代码: import java.util.*; import java.util.Scanner; /* *动态规划思想解决0/1背包问题 */ public class Main{ public static void main(String[] args){ Scanner in=new Scanner(System.in); System.out.println("输入背包的容量"); int bagCap=in.nextInt(); //背包的容量 System.out.pri

动态规划算法求解0,1背包问题

首先我们来看看动态规划的四个步骤: 1. 找出最优解的性质,并且刻画其结构特性: 2. 递归的定义最优解: 3. 以自底向上的方式刻画最优值: 4. 根据计算最优值时候得到的信息,构造最优解 其中改进的动态规划算法:备忘录法,是以自顶向下的方式刻画最优值,对于动态规划方法和备忘录方法,两者的使用情况如下: 一般来讲,当一个问题的所有子问题都至少要解一次时,使用动态规划算法比使用备忘录方法好.此时,动态规划算法没有任何多余的计算.同时,对于许多问题,常常可以利用其规则的表格存取方式,减少动态规划算

动态规划0—1背包问题

动态规划0-1背包问题 ? 问题描写叙述: 给定n种物品和一背包.物品i的重量是wi,其价值为vi,背包的容量为C.问应怎样选择装入背包的物品,使得装 入背包中物品的总价值最大? ? 对于一种物品,要么装入背包,要么不装.所以对于一种物品的装入状态能够取0和1.我们设物品i的装入状态为xi,xi∈ (0,1),此问题称为0-11背包问题. 过程分析 数据:物品个数n=5,物品重量w[n]={0,2,2,6,5,4},物品价值V[n]={0,6,3,5,4,6}, (第0位,置为0,不參与计算,仅

【算法设计与分析】7、0/1背包问题,动态规划

/** * 书本:<算法分析与设计> * 功能:给定n种物品和一个背包,物品i的重量是Wi, 其价值为Vi,问如何选择装入背包的物品,使得装入背包的物品的总价值最大? * 文件:beiBao.cpp * 时间:2014年11月30日19:22:47 * 作者:cutter_point */ #include <iostream> #define SIZEBEIBAO 20 using namespace std; //这个背包问题的最优的子结构是 /* 首先这里一共有m种物品,背包

第十六章 贪心算法——0/1背包问题

1.问题描述: 给定n种物品和一背包.物品i的重量是wi,其价值为vi,背包的容量为C.问:应如何选择装入背包的物品,使得装入背包中物品的总价值最大? 形式化描述:给定c >0, wi >0, vi >0 , 1≤i≤n.要求找一n元向量(x1,x2,…,xn,), xi∈{0,1}, ∋ ∑ wi xi≤c,且∑ vi xi达最大.即一个特殊的整数规划问题. 2.最优性原理: 设(y1,y2,…,yn)是 (3.4.1)的一个最优解.则(y2,…,yn)是下面相应子问题的一个最优解:

动态规划--0,1背包问题(再也不怕类似背包问题了)

这种类型问题三大要素:总重量.每件物品重量.每件物品价值,问最终能够塞进背包中的价值最大是多少?应该怎么选择物品? 当然也不一定是这些,例如上节所说的矿工挖矿:总人数.挖每座矿的人数.每座矿的金子数. 也就是说,只要出现了这三大要素,都可以视为0,1背包问题(物品不可拆分) 动态规划三要素:边界.最优子结构.状态转移方程. 我们一步步进行解析: 初始化:物品总重量:c=8,物品类别:n=['a','b','c','d'],物品重量:w=[2,4,5,3],物品价值:v=[5,4,6,2] 假设我

求解0/1背包问题

动态规划 //求解0_1背包问题 //动态规划 #include<stdio.h> #define MaxN 20 #define MaxW 100 int knap(int f[MaxN][MaxW],int w[],int v[],int W,int n){ //动态规划求数组f[][] int i,r; for(i=0;i<=n;i++) f[i][0] = 0; for(r=0;r<=W;r++) f[0][r] = 0; for(i=1;i<=n;i++){ for