[tarjan] poj 2553 The Bottom of a Graph

题目链接:

http://poj.org/problem?id=2553


The Bottom of a Graph

Time Limit: 3000MS   Memory Limit: 65536K
Total Submissions: 8899   Accepted: 3686

Description

We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges.
Then G=(V,E) is called a directed graph.

Let n be a positive integer, and let p=(e1,...,en) be a sequence of length n of edges ei∈E such that ei=(vi,vi+1) for a sequence of vertices (v1,...,vn+1).
Then p is called a path from vertex v1 to vertex vn+1 in G and we say that vn+1 is reachable from v1, writing (v1→vn+1).

Here are some new definitions. A node v in a graph G=(V,E) is called a sink, if for every node w in G that is reachable from vv is also reachable from w. The bottom of a graph is the subset of
all nodes that are sinks, i.e.,bottom(G)={v∈V|?w∈V:(v→w)?(w→v)}. You have to calculate the bottom of certain graphs.

Input

The input contains several test cases, each of which corresponds to a directed graph G. Each test case starts with an integer number v, denoting the number of vertices of G=(V,E), where the vertices will be identified by the integer
numbers in the set V={1,...,v}. You may assume that 1<=v<=5000. That is followed by a non-negative integer e and, thereafter, e pairs of vertex identifiers v1,w1,...,ve,we with
the meaning that (vi,wi)∈E. There are no edges other than specified by these pairs. The last test case is followed by a zero.

Output

For each test case output the bottom of the specified graph on a single line. To this end, print the numbers of all nodes that are sinks in sorted order separated by a single space character. If the bottom is empty, print an empty line.

Sample Input

3 3
1 3 2 3 3 1
2 1
1 2
0

Sample Output

1 3
2

Source

Ulm Local 2003

[Submit]   [Go Back]   [Status]  
[Discuss]

题目意思:

给一幅有向图,求这样的节点i的集合,使得如果i到其他任意节点j可达的话,j也有路劲可达i。

解题思路:

tarjan+缩点+统计出度为0的强连通分量,并输出其中的节点。

代码:

//#include<CSpreadSheet.h>

#include<iostream>
#include<cmath>
#include<cstdio>
#include<sstream>
#include<cstdlib>
#include<string>
#include<string.h>
#include<cstring>
#include<algorithm>
#include<vector>
#include<map>
#include<set>
#include<stack>
#include<list>
#include<queue>
#include<ctime>
#include<bitset>
#include<cmath>
#define eps 1e-6
#define INF 0x3f3f3f3f
#define PI acos(-1.0)
#define ll __int64
#define LL long long
#define lson l,m,(rt<<1)
#define rson m+1,r,(rt<<1)|1
#define M 1000000007
//#pragma comment(linker, "/STACK:1024000000,1024000000")
using namespace std;

#define Maxn 5500
int low[Maxn],dfn[Maxn],sta[Maxn],n,m;
int dep,bc,sc,in[Maxn];
bool iss[Maxn];
vector<vector<int> >myv;
int de[Maxn];

void tarjan(int cur)
{
    int ne;

    low[cur]=dfn[cur]=++dep;
    sta[++sc]=cur;
    iss[cur]=true;

    for(int i=0;i<myv[cur].size();i++)
    {
        ne=myv[cur][i];
        if(!dfn[ne])
        {
            tarjan(ne);
            low[cur]=min(low[cur],low[ne]);
        }
        else if(iss[ne]&&dfn[ne]<low[cur])
            low[cur]=dfn[ne];
    }

    if(low[cur]==dfn[cur])
    {
        bc++;
        do
        {
            ne=sta[sc--];
            in[ne]=bc;
            iss[ne]=false;
        }while(ne!=cur);
    }

}
void solve()
{
    sc=bc=dep=0;
    memset(iss,false,sizeof(iss));
    memset(dfn,0,sizeof(dfn));
    for(int i=1;i<=n;i++)
        if(!dfn[i])
            tarjan(i);
}
int main()
{
    //freopen("in.txt","r",stdin);
   //freopen("out.txt","w",stdout);

   while(scanf("%d",&n)&&n)
   {
       scanf("%d",&m);
       myv.clear();
       myv.resize(n+1);

       for(int i=1;i<=m;i++)
       {
           int a,b;
           scanf("%d%d",&a,&b);
           myv[a].push_back(b);
       }
       solve();
       memset(de,0,sizeof(de));
       for(int i=1;i<=n;i++)
       {
           for(int j=0;j<myv[i].size();j++)
           {
               int ne=myv[i][j];

               if(in[i]!=in[ne])
                    de[in[i]]++;
           }
       }
       bool fi=true;
       for(int i=1;i<=n;i++)
       {
           if(!de[in[i]])
           {
               if(!fi)
                    putchar(' ');
               else
                    fi=false;
               printf("%d",i);
           }
       }
       printf("\n");
   }
    return 0;
}
时间: 2024-10-12 13:28:07

[tarjan] poj 2553 The Bottom of a Graph的相关文章

POJ 2553 The Bottom of a Graph(Tarjan,强连通分量)

解题思路: 本题要求 求出所有满足"自己可达的顶点都能到达自己"的顶点个数,并从小到大输出. 利用Tarjan算法求出强连通分量,统计每个强连通分量的出度,出度为0的强连通分量内的顶点即为所求顶点. #include <iostream> #include <cstring> #include <cstdlib> #include <cstdio> #include <algorithm> #include <cmath

POJ 2553 The Bottom of a Graph TarJan算法题解

本题分两步: 1 使用Tarjan算法求所有最大子强连通图,并且标志出来 2 然后遍历这些节点看是否有出射的边,没有的顶点所在的子强连通图的所有点,都是解集. Tarjan算法就是模板算法了. 这里使用一个数组和一个标识号,就可以记录这个顶点是属于哪个子强连通图的了. 然后使用DFS递归搜索所有点及其边,如果有边的另一个顶点不属于本子强连通图,那么就说明有出射的边. 有难度的题目: #include <stdio.h> #include <stdlib.h> #include &l

poj 2553 The Bottom of a Graph 【强连通图中出度为0点】

题目:poj 2553 The Bottom of a Graph 题意:大概题意是给出一个有向图,求强连通缩点以后出度为0的点. 分析:入门题目,先强连通缩点,然后表示出度为0的,枚举输出即可. #include <cstdio> #include <vector> #include <iostream> #include <stack> #include <cstring> using namespace std; const int N =

POJ 2553 The Bottom of a Graph(强连通分量)

POJ 2553 The Bottom of a Graph 题目链接 题意:给定一个有向图,求出度为0的强连通分量 思路:缩点搞就可以 代码: #include <cstdio> #include <cstring> #include <algorithm> #include <vector> #include <stack> using namespace std; const int N = 5005; int n, m; vector&l

POJ 2553 The Bottom of a Graph

The Bottom of a Graph Time Limit: 3000ms Memory Limit: 65536KB This problem will be judged on PKU. Original ID: 255364-bit integer IO format: %lld      Java class name: Main We will use the following (standard) definitions from graph theory. Let V be

poj 2553 The Bottom of a Graph【强连通分量求汇点个数】

The Bottom of a Graph Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 9641   Accepted: 4008 Description We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called ver

POJ 2553 The Bottom of a Graph (强连通分量)

题目地址:POJ 2553 题目意思不好理解.题意是:G图中从v可达的全部点w,也都能够达到v,这种v称为sink.然后升序输出全部的sink. 对于一个强连通分量来说,全部的点都符合这一条件,可是假设这个分量还连接其它分量的话,则肯定都不是sink.所以仅仅须要找出度为0的强连通分量就可以. 代码例如以下: #include <iostream> #include <string.h> #include <math.h> #include <queue>

POJ 2553 The Bottom of a Graph 【scc tarjan】

图论之强连通复习开始- - 题目大意:给你一个有向图,要你求出这样的点集:从这个点出发能到达的点,一定能回到这个点 思路:强连通分量里的显然都可以互相到达 那就一起考虑,缩点后如果一个点有出边,一定不在点集内,因为缩点后是DAG,无环,因此一定不能回到原来的点,所以找到出度为0的点即可 #include<cstdio> #include<string.h> #include<math.h> #include<algorithm> #include<io

POJ 2553 The Bottom of Graph 强连通图题解

Description We will use the following (standard) definitions from graph theory. Let V be a nonempty and finite set, its elements being called vertices (or nodes). Let E be a subset of the Cartesian product V×V, its elements being called edges. Then G