Matterport3D: Learning from RGB-D Data in Indoor Environments

Abstract

Access to large, diverse RGB-D datasets is critical for training RGB-D scene understanding algorithms. However, existing datasets still cover only a limited number of views or a restricted scale of spaces. In this paper, we introduce Matterport3D, a large-scale RGB-D dataset containing 10,800 panoramic views from 194,400 RGB-D images of 90 building-scale scenes. Annotations are provided with surface reconstructions, camera poses, and 2D and 3D semantic segmentations. The precise global alignment and comprehensive, diverse panoramic set of views over entire buildings enable a variety of supervised and self-supervised computer vision tasks, including keypoint matching, view overlap prediction, normal prediction from color, semantic segmentation, and scene classification.

Paper

A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Niessner, M. Savva, S. Song, A. Zeng, Y. Zhang
Matterport3D: Learning from RGB-D Data in Indoor Environments
International Conference on 3D Vision (3DV 2017)
Paper | arXiv (low res)| Supplemental Material

@article{Matterport3D,
  title={Matterport3D: Learning from RGB-D Data in Indoor Environments},
  author={Chang, Angel and Dai, Angela and Funkhouser, Thomas and Halber, Maciej and Niessner, Matthias and Savva, Manolis and Song, Shuran and Zeng, Andy and Zhang, Yinda},
  journal={International Conference on 3D Vision (3DV)},
  year={2017}
}

Dataset Download

Please fill and sign the Terms of Use agreement form and send it to [email protected] to request access to the dataset.

Code

Please check the git repository for a detailed introduction to the dataset and code for several vision tasks.

Explore the dataset

Coming soon!

Contact

Please contact us at [email protected] if you have any questions.

时间: 2024-11-29 10:17:04

Matterport3D: Learning from RGB-D Data in Indoor Environments的相关文章

Spark的Python和Scala shell介绍(翻译自Learning.Spark.Lightning-Fast.Big.Data.Analysis)

Spark提供了交互式shell,交互式shell让我们能够点对点(原文:ad hoc)数据分析.如果你已经使用过R,Python,或者Scala中的shell,或者操作系统shell(例如bash),又或者Windows的命令提示符界面,你将会对Spark的shell感到熟悉. 但实际上Spark shell与其它大部分shell都不一样,其它大部分shell让你通过单个机器上的磁盘或者内存操作数据,Spark shell让你可以操作分布在很多机器上的磁盘或者内存里的数据,而Spark负责在集

Learning Spark: Lightning-Fast Big Data Analysis 中文翻译

Learning Spark: Lightning-Fast Big Data Analysis 中文翻译行为纯属个人对于Spark的兴趣,仅供学习. 如果我的翻译行为侵犯您的版权,请您告知,我将停止对此书的开源翻译. Translation the book of Learning Spark: Lightning-Fast Big Data Analysis is only for spark developer educational purposes. If I violated you

data mining,machine learning,AI,data science,data science,business analytics

数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系? 本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答不出来,我在知乎和博客上查了查这个问题,发现还没有人写过比较详细和有说服力的对比

【论文阅读-CTR】<<Deep Learning over Multi-filed Categorical Data -A Case Study On User Response Prediction>>阅读

摘要: 用户反馈预估是搜素.推荐.广告的核心问题:其特征都是多域的分类和数值特征,难以利用: 常用的方法是线性模型+人工特征组合来预估: 本文通过FNN(基于FM)和SNN(基于RBM和DAE)来预估. 1.介绍 常用的ctr预估模型: 1)线性模型:LR->NB->FTRLLR->Bayesian probit regression 优点:容易实现:高效学习 缺点:不能学习特征组合,效果较差 2)非线性模型:FM,GBM 优点:自动学习组合特征 缺点:不能充分利用各种特征组合 很多模型

单独的应用程序(翻译自Learning.Spark.Lightning-Fast.Big.Data.Analysis)

在这次对Spark粗略的讲解过程中,我们还没有讲如何在单独的应用程序中使用Spark.撇开交互式运行来说,我们能在Java,Scala或这Python程序中连接Spark.与在shell中连接Spark相比,唯一的区别是,在程序中,你需要自己初始化SparkContext . 连接Spark的过程因语言而异.在Java和Scala中,你在你的应用程序的Maven依赖中添加对spark-core 的依赖就可以了.到写这本书的时候,Spark的最新版是1.2.0,它对应的Maven坐标是: grou

Spark核心概念介绍(翻译自Learning.Spark.Lightning-Fast.Big.Data.Analysis)

既然你已经在shell里运行了你的第一个Spark代码片段,是时候来学习在shell里面编程的更多细节了. 从上层看,每一个Spark程序都是由一个驱动程序组成,这个驱动程序在集群上发布各种各样的平行操作.驱动程序包含你的应用程序的main函数,定义在集群上的分布式数据集,并且将一些操作作用在这些数据集上.在之前的例子中,驱动程序是Spark shell本身,你只需要在里面输入你想要运行的操作就行了. 驱动程序通过一个SparkContext 对象访问Spark,一个SparkContext 对

An introduction to machine learning with scikit-learn

转自 http://scikit-learn.org/stable/tutorial/basic/tutorial.html#machine-learning-the-problem-setting In general, a learning problem considers a set of n samples of data and then tries to predict properties of unknown data. If each sample is more than

Introduction to Machine Learning

Chapter 1 Introduction 1.1 What Is Machine Learning? To solve a problem on a computer, we need an algorithm. An algorithm is a sequence of instructions that should be carried out to transform the input to output. For example, one can devise an algori

SOME USEFUL MACHINE LEARNING LIBRARIES.

from: http://www.erogol.com/broad-view-machine-learning-libraries/ http://www.slideshare.net/VincenzoLomonaco/deep-learning-libraries-and-rst-experiments-with-theano FEBRUARY 6, 2014 EREN 1 COMMENT Especially, with the advent of many different and in