STM32中断系统

1.中断介绍:
    
1.1 中断概念 CPU执行程序时,由于发生了某种随机的事件(外部或内部),引起CPU暂 时中断正在运行的程序,转去执行一段特殊的服务程序(中断服务子程序 或中断处理程     
           序),以处理该事件,该事件处理完后又返回被中断的程序 继续执行,这一过程称为中断。引发中断的称为中断源。比如:看电视 时突然门铃响,那么门铃响就相当于中
           断源。有些中断还能够被其他高 优先级的中断所中断,那么这种情况又叫做中断的嵌套。
           

STM32F10x芯片有84个中断通道,包括 16 个内核中断和 68 个可屏蔽中 断,这些中断通道已按照不同优先级顺序固定分配给相应的外部设备。                                                      (参考《STM32F10x中文参考手册》-9 中断和事件章节)
          

1.2 NVIC介绍
       NVIC英文全称是Nested Vectored Interrupt Controller,中文意思 就是嵌套向量中断控制器,它属于M3内核的一个外设,控制着芯片的中 断相关功能。由于ARM给NVIC预
       留了非常多的功能,但对于使用M3内核设 计芯片的公司可能就不需要这么多功能,于是就需要在NVIC上裁剪。ST 公司的STM32F103芯片内部中断数量就是NVIC裁剪后
       的结果。 中断控制相关寄存器在固件库core_cm3.h文件NVIC结构体内。可打开 任意库函数工程即可查看到。

1.3 中断优先级
  STM32F103芯片支持60个可屏蔽中断通道,每个中断通道 都具备自己的中断优先级控制字节(8位,但是STM32F103中只使用4位 ,高4位有效),用于表达优先级的高4位
       又被为组成抢占式优先级和响应 优先级,通常也把响应优先级称为“亚优先级”或“副优先级”,每个 中断源都需要被指定这两种优先级。 高抢占式优先级的中断事件会打断当
  前的主程序或者中断程序运行, 俗称中断嵌套。在抢占式优先级相同的情况下,高响应优先级的中断优 先被响应。 当两个中断源的抢占式优先级相同时,这两个中断将没
  有嵌套关系, 当一个中断到来后,如果正在处理另一个中断,这个后到来的中断就要 等到前一个中断处理完之后才能被处理。如果这两个中断同时到达,则 中断控制器根
  据他们的响应优先级高低来决定先处理哪一个;如果他们 的抢占式优先级和响应优先级都相等,则根据他们在中断表中的排位顺 序决定先处理那一个。

STM32F103中指定中断优先级的寄存器位有4位,这4位的分组方式 如下:
             

设置优先级分组可调用库函数 NVIC_PriorityGroupConfig(),在 misc.c可以查看

2.中断配置步骤
要使用中断我们就需要先配置它,通常都需经过这几步:
(1)使能外设某个中断
(2)设置中断优先级分组,初始化 NVIC_InitTypeDef 结构体
         typedef struct {
                   uint8_t NVIC_IRQChannel; //中断源
                   uint8_t NVIC_IRQChannelPreemptionPriority; //抢占优先级
                   uint8_t NVIC_IRQChannelSubPriority; //响应优先级
      FunctionalState NVIC_IRQChannelCmd; //中断使能或失能
         } NVIC_InitTypeDef;
 (3)编写中断服务函数
          可以根据启动文件进行查看相应的中断服务函数的函数名。

原文地址:https://www.cnblogs.com/DXGG-Bond/p/11829438.html

时间: 2024-11-02 18:39:18

STM32中断系统的相关文章

STM32中断控制的流程

对于 STM32 讲(还是以Timer2例),外部中断通道位置 28(35 号优先级)是给外部设备 TIME2 的,但 TIME2本身能够引起中断的中断源或事件有好多个,比如更新事件(上溢/下溢) .输入捕获.输出匹配.DMA 申请等.所有TIME2 的中断事件都是通过一个 TIME2 的中断通道向 STM32 内核提出中断申请,那么 STM32 中如何处理和控制 TIME2 和它众多的.不同的.中断申请呢? 1.因为cortex_m3 内核对于每一个外部中断通道都有相应的控制字和控制位,用于单

STM32中断管理函数

CM3 内核支持256 个中断,其中包含了16 个内核中断和240 个外部中断,并且具有256 级的可编程中断设置.但STM32 并没有使用CM3 内核的全部东西,而是只用了它的一部分. STM32 有76 个中断,包括16 个内核中断和60 个可屏蔽中断,具有16 级可编程的中断优先级. 而我们常用的就是这60 个可屏蔽中断,所以我们就只针对这60 个可屏蔽中断进行介绍. 在 MDK 内,与NVIC 相关的寄存器,MDK 为其定义了如下的结构体: typedef struct { vu32 I

STM32之系统滴答定时器

一.SysTick(系统滴答定时器)概述 操作系统需要一个滴答定时器周期性产生中断,以产生系统运行的节拍.在中断服务程序里,基于优先级调度的操作系统会根据进程优先级切换任务,基于时间片轮转系统会根据时间片切换任务.总之,滴答定时器是一个操作系统的"心跳". Cortex-M3在内核部分封装了一个滴答定时器--SysTick,在之前的ARM内核通常是不会把定时器做进内核,定时器都是SOC厂商自己制作的外设.显然,Cortex-M3封装了这么一个定时器,对于将操作系统移植到不同SOC厂商生

[stm32] 中断

1 #include "stm32f10x.h" 2 #include "stm32f10x_tim.h" 3 #include "misc.h" 4 #include "stm32f10x_gpio.h" 5 6 unsigned int CCR2_Val=45000; 7 extern void time_ini(void); 8 unsigned int capture1=0; 9 TIM_TimeBaseInitTyp

STM32 中断应用概览

本章参考资料< STM32F4xx 中文参考手册>第十章-中断和事件.<ARM Cortex?-M4F 技术参考手册> -4.3 章节: NVIC 和 4.4 章节: SCB-4.4.5 的 AIRCR.STM32 中断非常强大,每个外设都可以产生中断,所以中断的讲解放在哪一个外设里面去讲都不合适,这里单独抽出一章来做一个总结性的介绍,这样在其他章节涉及到中断部分的知识我们就不用费很大的篇幅去讲解,只要示意性带过即可.本章如无特别说明,异常就是中断,中断就是异常,请不要刻意钻牛角尖

Linux中断(interrupt)子系统之一:中断系统基本原理

这个中断系列文章主要针对移动设备中的Linux进行讨论,文中的例子基本都是基于ARM这一体系架构,其他架构的原理其实也差不多,区别只是其中的硬件抽象层.内核版本基于3.3.虽然内核的版本不断地提升,不过自从上一次变更到当前的通用中断子系统后,大的框架性的东西并没有太大的改变. /*****************************************************************************************************/ 声明:本博内容

单片机的中断系统

中断概念 正常的工作过程被外部的事件打断了,EX 你正在家中看书,突然电话铃响了,你放下书本,去接电话,和来电话的人交谈,然后放下电话,回来继续看你的书. 中断源 引起中断的事件称之为中断源,51中一共有5五个:两个外部中断,两个计数/定时器中断,一个串行口中断. 中断优先级与嵌套 当两个中断同时产生时,就要考虑优先级. 当一个中断已发生,又一个中断产生了,又要考虑另一种嵌套优先级. 中断的响应过程 保护断点:保存下面将要执行的指令地址送人堆栈,以便中断处理完之后回到原来地方继续执行 寻找中断入

STM32时钟系统

一.在STM32中,有五个时钟源,为HSI.HSE.LSI.LSE.PLL. ①HSI是高速内部时钟,RC振荡器,频率为8MHz. ②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz.一般接8MHZ. ③LSI是低速内部时钟,RC振荡器,频率为40kHz. ④LSE是低速外部时钟,接频率为32.768kHz的石英晶体. ⑤PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2.HSE或者HSE/2.倍频可选择为2~16倍,但是其输出频率最大不得超过72

Linux中断(interrupt)子系统之一:中断系统基本原理【转】

转自:http://blog.csdn.net/droidphone/article/details/7445825 这个中断系列文章主要针对移动设备中的Linux进行讨论,文中的例子基本都是基于ARM这一体系架构,其他架构的原理其实也差不多,区别只是其中的硬件抽象层.内核版本基于3.3.虽然内核的版本不断地提升,不过自从上一次变更到当前的通用中断子系统后,大的框架性的东西并没有太大的改变. /***************************************************