超级详细解读基本排序算法(不看后悔)

排序与我们日常生活中息息相关,比如,我们要从电话簿中找到某个联系人首先会按照姓氏排序、买火车票会按照出发时间或者时长排序、买东西会按照销量或者好评度排序、查找文件会按照修改时间排序等等。在计算机程序设计中,排序和查找也是最基本的算法,很多其他的算法都是以排序算法为基础,在一般的数据处理或分析中,通常第一步就是进行排序,比如说二分查找,首先要对数据进行排序。在Donald
Knuth
的计算机程序设计的艺术这四卷书中,有一卷是专门介绍排序和查找的。

排序的算法有很多,在维基百科上有这么一个分类,另外大家有兴趣也可以直接上维基百科上看相关算法,本文也参考了上面的内容。

首先来看比较简单的选择排序(Selection sort),插入排序(Insertion sort),然后在分析插入排序的特征和缺点的基础上,介绍在插入排序基础上改进的希尔排序(Shell sort)。

一 选择排序

原理

选择排序很简单,他的步骤如下:

  1. 从左至右遍历,找到最小(大)的元素,然后与第一个元素交换。
  2. 从剩余未排序元素中继续寻找最小(大)元素,然后与第二个元素进行交换。
  3. 以此类推,直到所有元素均排序完毕。

之所以称之为选择排序,是因为每一次遍历未排序的序列我们总是从中选择出最小的元素。下面是选择排序的动画演示:

实现:

算法实现起来也很简单,我们新建一个Sort泛型类,让该类型必须实现IComparable接口,然后我们定义SelectionSort方法,方法传入T数组,代码如下:

/// <summary>
/// 排序算法泛型类,要求类型实现IComparable接口
/// </summary>
/// <typeparam name="T"></typeparam>
public class Sort<T> where T : IComparable<T>
{
    /// <summary>
    /// 选择排序
    /// </summary>
    /// <param name="array"></param>
    public static void SelectionSort(T[] array)
    {
        int n = array.Length;

        for (int i = 0; i < n; i++)
        {
            int min = i;
            //从第i+1个元素开始,找最小值
            for (int j = i + 1; j < n; j++)
            {
                if (array[min].CompareTo(array[j]) > 0)
                    min = j;
            }
            //找到之后和第i个元素交换
            Swap(array, i, min);
        }
    }

    /// <summary>
    /// 元素交换
    /// </summary>
    /// <param name="array"></param>
    /// <param name="i"></param>
    /// <param name="min"></param>
    private static void Swap(T[] array, int i, int min)
    {
        T temp = array[i];
        array[i] = array[min];
        array[min] = temp;
    }
}

下图分析了选择排序中每一次排序的过程,您可以对照图中右边的柱状图来看。

测试如下:

static void Main(string[] args)
{
    Int32[] array = new Int32[] { 1, 3, 1, 4, 2, 4, 2, 3, 2, 4, 7, 6, 6, 7, 5, 5, 7, 7 };
    Console.WriteLine("Before SelectionSort:");
    PrintArray(array);
    Sort<Int32>.SelectionSort(array);
    Console.WriteLine("After SelectionSort:");
    PrintArray(array);
    Console.ReadKey();
}

输出结果:

分析:

选择排序的在各种初始条件下的排序效果如下:

  1. 选择排序需要花费 (N – 1) + (N – 2) + ... + 1 + 0 = N(N- 1) / 2 ~ N2/2次比较 和
    N-1次交换操作。
  2. 对初始数据不敏感,不管初始的数据有没有排好序,都需要经历N2/2次比较,这对于一些原本排好序,或者近似排好序的序列来说并不具有优势。在最好的情况下,即所有的排好序,需要0次交换,最差的情况,倒序,需要N-1次交换。
  3. 数据交换的次数较少,如果某个元素位于正确的最终位置上,则它不会被移动。在最差情况下也只需要进行N-1次数据交换,在所有的完全依靠交换去移动元素的排序方法中,选择排序属于比较好的一种。

二 插入排序

原理

插入排序也是一种比较直观的排序方式。可以以我们平常打扑克牌为例来说明,假设我们那在手上的牌都是排好序的,那么插入排序可以理解为我们每一次将摸到的牌,和手中的牌从左到右依次进行对比,如果找到合适的位置则直接插入。具体的步骤为:

  1. 从第一个元素开始,该元素可以认为已经被排序
  2. 取出下一个元素,在已经排序的元素序列中从后向前扫描
  3. 如果该元素小于前面的元素(已排序),则依次与前面元素进行比较如果小于则交换,直到找到大于该元素的就则停止;
  4. 如果该元素大于前面的元素(已排序),则重复步骤2
  5. 重复步骤2~4 直到所有元素都排好序 。

下面是插入排序的动画演示:

实现:

在Sort泛型方法中,我们添加如下方法,下面的方法和上面的定义一样

/// <summary>
/// 插入排序
/// </summary>
/// <param name="array"></param>
public static void InsertionSort(T[] array)
{
    int n = array.Length;
    //从第二个元素开始
    for (int i = 1; i < n; i++)
    {
        //从第i个元素开始,一次和前面已经排好序的i-1个元素比较,如果小于,则交换
        for (int j = i; j > 0; j--)
        {
            if (array[j].CompareTo(array[j - 1]) < 0)
            {
                Swap(array, j, j - 1);
            }
            else//如果大于,则不用继续往前比较了,因为前面的元素已经排好序,比较大的大就是教大的了。
                break;
        }
    }
}

测试如下:

Int32[] array1 = new Int32[] { 1, 3, 1, 4, 2, 4, 2, 3, 2, 4, 7, 6, 6, 7, 5, 5, 7, 7 };
Console.WriteLine("Before InsertionSort:");
PrintArray(array1);
Sort<Int32>.InsertionSort(array1);
Console.WriteLine("After InsertionSort:");
PrintArray(array1);
Console.ReadKey();

输出结果:

分析:

插入排序的在各种初始条件下的排序效果如下:

1. 插入排序平均需要N2/4次比较和N2/4 次交换。在最坏的情况下需要N2/2 次比较和交换;在最好的情况下只需要N-1次比较和0次交换。

先考虑最坏情况,那就是所有的元素逆序排列,那么第i个元素需要与前面的i-1个元素进行i-1次比较和交换,所有的加起来大概等于N(N- 1) / 2 ~ N2 / 2,在数组随机排列的情况下,只需要和前面一半的元素进行比较和交换,所以平均需要N2/4次比较和N2/4 次交换。

在最好的情况下,所有元素都排好序,只需要从第二个元素开始都和前面的元素比较一次即可,不需要交换,所以为N-1次比较和0次交换。

2. 插入排序中,元素交换的次数等于序列中逆序元素的对数。元素比较的次数最少为元素逆序元素的对数,最多为元素逆序的对数 加上数组的个数减1。

3.总体来说,插入排序对于部分有序序列以及元素个数比较小的序列是一种比较有效的方式。

如上图中,序列AEELMOTRXPS,中逆序的对数为T-R,T-P,T-S,R-P,X-S 6对。典型的部分有序队列的特征有:

  • 数组中每个元素离最终排好序后的位置不太远
  • 小的未排序的数组添加到大的已排好序的数组后面
  • 数组中只有个别元素未排好序

对于部分有序数组,插入排序是比较有效的。当数组中逆元素的对数越低,插入排序要比其他排序方法要高效的多。

选择排序和插入排序的比较

上图展示了插入排序和选择排序的动画效果。图中灰色的柱子是不用动的,黑色的是需要参与到比较中的,红色的是参与交换的。图中可以看出:

插入排序不会动右边的元素,选择排序不会动左边的元素;由于插入排序涉及到的未触及的元素要比插入的元素要少,涉及到的比较操作平均要比选择排序少一半。

三 希尔排序(Shell Sort)

原理:

希尔排序也称之为递减增量排序,他是对插入排序的改进。在第二部插入排序中,我们知道,插入排序对于近似已排好序的序列来说,效率很高,可以达到线性排序的效率。但是插入排序效率也是比较低的,他一次只能将数据向前移一位。比如如果一个长度为N的序列,最小的元素如果恰巧在末尾,那么使用插入排序仍需一步一步的向前移动和比较,要N-1次比较和交换。

希尔排序通过将待比较的元素划分为几个区域来提升插入排序的效率。这样可以让元素可以一次性的朝最终位置迈进一大步,然后算法再取越来越小的步长进行排序,最后一步就是步长为1的普通的插入排序的,但是这个时候,整个序列已经是近似排好序的,所以效率高。

如下图,我们对下面数组进行排序的时候,首先以4为步长,这是元素分为了LMPT,EHSS,ELOX,AELR几个序列,我们对这几个独立的序列进行插入排序,排序完成之后,我们减小步长继续排序,最后直到步长为1,步长为1即为一般的插入排序,他保证了元素一定会被排序。

希尔排序的增量递减算法可以随意指定,可以以N/2递减,只要保证最后的步长为1即可。

实现:

/// <summary>
/// 希尔排序
/// </summary>
/// <param name="array"></param>
public static void ShellSort(T[] array)
{
    int n = array.Length;
    int h = 1;
    //初始最大步长
    while (h < n / 3) h = h * 3 + 1;
    while (h >= 1)
    {
        //从第二个元素开始
        for (int i = 1; i < n; i++)
        {
            //从第i个元素开始,依次次和前面已经排好序的i-h个元素比较,如果小于,则交换
            for (int j = i; j >= h; j = j - h)
            {
                if (array[j].CompareTo(array[j - h]) < 0)
                {
                    Swap(array, j, j - h);
                }
                else//如果大于,则不用继续往前比较了,因为前面的元素已经排好序,比较大的大就是教大的了。
                    break;
            }
        }
        //步长除3递减
        h = h / 3;
    }
}

可以看到,希尔排序的实现是在插入排序的基础上改进的,插入排序的步长为1,每一次递减1,希尔排序的步长为我们定义的h,然后每一次和前面的-h位置上的元素进行比较。算法中,我们首先获取小于N/3 的最大的步长,然后逐步长递减至步长为1的一般的插入排序。

下面是希尔排序在各种情况下的排序动画:

分析:

1. 希尔排序的关键在于步长递减序列的确定,任何递减至1步长的序列都可以,目前已知的比较好的序列有

  • Shell‘s 序列: N/2 , N/4 , ..., 1 (重复除以2);
  • Hibbard‘s 序列: 1, 3, 7, ..., 2k - 1 ;
  • Knuth‘s 序列: 1, 4, 13, ..., (3k - 1) / 2 ;该序列是本文代码中使用的序列。
  • 已知最好的序列是 Sedgewick‘s (Knuth的学生,Algorithems的作者)的序列: 1, 5, 19, 41, 109, ....

该序列由下面两个表达式交互获得:

  • 1, 19, 109, 505, 2161,….., 9(4k – 2k) + 1, k = 0, 1, 2, 3,…
  • 5, 41, 209, 929, 3905,…..2k+2 (2k+2 – 3 ) + 1, k = 0, 1, 2, 3, …

“比较在希尔排序中是最主要的操作,而不是交换。”用这样步长的希尔排序比插入排序和堆排序都要快,甚至在小数组中比快速排序还快,但是在涉及大量数据时希尔排序还是比快速排序慢。

2. 希尔排序的分析比较复杂,使用Hibbard’s 递减步长序列的时间复杂度为O(N3/2),平均时间复杂度大约为O(N5/4) ,具体的复杂度目前仍存在争议。

3. 实验表明,对于中型的序列( 万),希尔排序的时间复杂度接近最快的排序算法的时间复杂度nlogn。

四 总结

最后总结一下本文介绍的三种排序算法的最好最坏和平均时间复杂度。


名称


最好


平均


最坏


内存占用


稳定排序


插入排序


n


n2


n2


1



选择排序


n2


n2


n2


1



希尔排序


n


nlog2n

n3/2


依赖于增量递减序列目前最好的是 nlog2n


1


希望本文对您了解以上三个基本的排序算法有所帮助,后面将会介绍合并排序和快速排序。

时间: 2024-10-13 00:43:51

超级详细解读基本排序算法(不看后悔)的相关文章

超级具体解读基本排序算法(不看懊悔,带排序演示动画)

排序与我们日常生活中息息相关.比方.我们要从电话簿中找到某个联系人首先会依照姓氏排序.买火车票会依照出发时间或者时长排序.买东西会依照销量或者好评度排序.查找文件会依照改动时间排序等等.在计算机程序设计中,排序和查找也是最主要的算法,非常多其它的算法都是以排序算法为基础,在一般的数据处理或分析中.通常第一步就是进行排序,比方说二分查找.首先要对数据进行排序.在Donald Knuth 的计算机程序设计的艺术这四卷书中.有一卷是专门介绍排序和查找的. 排序的算法有非常多.在维基百科上有这么一个分类

JavaScript版几种常见排序算法

今天发现一篇文章讲“JavaScript版几种常见排序算法”,看着不错,推荐一下原文:http://www.w3cfuns.com/blog-5456021-5404137.html 算法描述: * 冒泡排序:最简单,也最慢,貌似长度小于7最优* 插入排序: 比冒泡快,比快速排序和希尔排序慢,较小数据有优势* 快速排序:这是一个非常快的排序方式,V8的sort方法就使用快速排序和插入排序的结合* 希尔排序:在非chrome下数组长度小于1000,希尔排序比快速更快* 系统方法:在forfox下系

十大经典排序算法最强总结(含Java代码实现)

最近几天在研究排序算法,看了很多博客,发现网上有的文章中对排序算法解释的并不是很透彻,而且有很多代码都是错误的,例如有的文章中在"桶排序"算法中对每个桶进行排序直接使用了Collection.sort()函数,这样虽然能达到效果,但对于算法研究来讲是不可以的.所以我根据这几天看的文章,整理了一个较为完整的排序算法总结,本文中的所有算法均有JAVA实现,经本人调试无误后才发出,如有错误,请各位前辈指出. 0.排序算法说明 0.1 排序的定义 对一序列对象根据某个关键字进行排序. 0.2

数据结构常见的八大排序算法(详细整理)

https://www.jianshu.com/p/7d037c332a9d?utm_campaign=hugo&utm_medium=reader_share&utm_content=note&utm_source=weixin-friends 八大排序,三大查找是<数据结构>当中非常基础的知识点,在这里为了复习顺带总结了一下常见的八种排序算法.常见的八大排序算法,他们之间关系如下: 排序算法.png 他们的性能比较: 性能比较.png 下面,利用Python分别将他

十大经典排序算法详细总结(含JAVA代码实现)

原文出处:http://mp.weixin.qq.com/s/feQDjby4uYGRLbYUJq7Lpg 0.排序算法说明 0.1 排序的定义 对一序列对象根据某个关键字进行排序. 0.2 术语说明 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面: 不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面: 内排序:所有排序操作都在内存中完成: 外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行: 时间复杂度: 一个算法执行所耗费的时

十大经典排序算法动画与解析,看我就够了!(配代码完全版)

GitHub Repo:Sort Article Follow: MisterBooo · GitHub 排序算法是<数据结构与算法>中最基本的算法之一. 排序算法可以分为内部排序和外部排序. 内部排序是数据记录在内存中进行排序. 而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存. 常见的内部排序算法有:插入排序.希尔排序.选择排序.冒泡排序.归并排序.快速排序.堆排序.基数排序等. 用一张图概括: image 关于时间复杂度: 平方阶 (O(n2)) 排序

几种常用的排序算法

什么是算法 我想很多程序员恐怕误解了「算法」的意义,一想到算法就是动态规划,机器学习之类的高大名词.算法其实就是数学中的「解题过程」,解题过程要求精确,考虑各种情况,需要人看得懂.算法不需要你在键盘上选择什么编程语言实现,只需要在本子上详细的写出每一个步骤就可以了. 算法真的很重要吗? 我经常在社区里看到有人说初级开发不需要懂算法,这是非常真切的,很多的业务构建都是很常规的套路,查个数据库返回,没有太多复杂的计算,哪需要什么解题过程. 但是我想遇到稍微复杂一点的业务,或者想要系统运行得更流畅.更

Ehcache详细解读

Ehcache详细解读 Ehcache  是现在最流行的纯Java开源缓存框架,配置简单.结构清晰.功能强大,最初知道它,是从Hibernate的缓存开始的.网上中文的EhCache材料以简单介绍和配置方法居多,如果你有这方面的问题,请自行google:对于API,官网上介绍已经非常清楚,请参见官网:但是很少见到特性说明和对实现原理的分析,因此在这篇文章里面,我会详细介绍和分析EhCache的特性,加上一些自己的理解和思考,希望对缓存感兴趣的朋友有所收获. 一.特性一览 ,来自官网,简单翻译一下

MemCache超详细解读

MemCache是什么 MemCache是一个自由.源码开放.高性能.分布式的分布式内存对象缓存系统,用于动态Web应用以减轻数据库的负载.它通过在内存中缓存数据和对象来减少读取数据库的次数,从而提高了网站访问的速度.MemCaChe是一个存储键值对的HashMap,在内存中对任意的数据(比如字符串.对象等)所使用的key-value存储,数据可以来自数据库调用.API调用,或者页面渲染的结果.MemCache设计理念就是小而强大,它简单的设计促进了快速部署.易于开发并解决面对大规模的数据缓存的