【转-知乎】有监督 无监督 标签的解释,对我自己而言,比较容易懂(收藏)

作者:赵杨
链接:https://www.zhihu.com/question/23194489/answer/75555668
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

机器(计算机)学习分为有监督和无监督两个类,基本上可以从他们会不会得到一个特定的标签(label)输出来区分。这里标签指的是用来描述某一个物体属性的话语。比如人类有两种,我们要区分这两种人,就根据生理特征,分别对两种人打上标签,一种是[男人],另一种是[女人]。有监督学习(Supervised Learning):先来问题化地解释一下有监督学习:你有一些问题和他们的答案,你要做的有监督学习就是学习这些已经知道答案的问题。然后你就具备了经验了,这就是学习的成果。然后在你接受到一个新的不知道答案的问题的时候,你可以根据学习得到的经验,得出这个新问题的答案。(试想一下高考不正是这样,好的学习器就能有更强的做题能力,考好的分数,上好的大学.....)。我们有一个样本数据集,如果对于每一个单一的数据根据它的特征向量我们要去判断它的标签(算法的输出值),那么就是有监督学习。通俗的说,有监督学习就是比无监督学习多了一个可以表达这个数据特质的标签。我们再来看有监督学习,分为两个大类:1.回归分析(Regression Analysis):回归分析,其数据集是给定一个函数和它的一些坐标点,然后通过回归分析的算法,来估计原函数的模型,求出一个最符合这些已知数据集的函数解析式。然后它就可以用来预估其它未知输出的数据了,你输入一个自变量它就会根据这个模型解析式输出一个因变量,这些自变量就是特征向量,因变量就是标签。 而且标签的值是建立在连续范围的。
2.分类(Classification):其数据集,由特征向量和它们的标签组成,当你学习了这些数据之后,给你一个只知道特征向量不知道标签的数据,让你求它的标签是哪一个?其和回归的主要区别就是输出结果是离散的还是连续的。
无监督学习(Unsupervised Learning):“Because we don‘t give it the answer, it‘s unsupervised learning”。还是先来问题化地解释一下无监督学习:我们有一些问题,但是不知道答案,我们要做的无监督学习就是按照他们的性质把他们自动地分成很多组,每组的问题是具有类似性质的(比如数学问题会聚集在一组,英语问题会聚集在一组,物理........)。所有数据只有特征向量没有标签,但是可以发现这些数据呈现出聚群的结构,本质是一个相似的类型的会聚集在一起。把这些没有标签的数据分成一个一个组合,就是聚类(Clustering)。比如Google新闻,每天会搜集大量的新闻,然后把它们全部聚类,就会自动分成几十个不同的组(比如娱乐,科技,政治......),每个组内新闻都具有相似的内容结构。无监督学习还有一个典型的例子就是鸡尾酒会问题(声音的分离),在这个酒会上有两种声音,被两个不同的麦克风在不同的地方接收到,而可以利用无监督学习来分离这两种不同的声音。注意到这里是无监督学习的原因是,事先并不知道这些声音中有哪些种类(这里的种类就是标签的意思)。而且鸡尾酒问题的代码实现只要一行,如下:[注]:内容参考吴恩达在Coursera上的机器学习课程。

时间: 2024-10-09 03:04:50

【转-知乎】有监督 无监督 标签的解释,对我自己而言,比较容易懂(收藏)的相关文章

转:Deep learning系列(十五)有监督和无监督训练

http://m.blog.csdn.net/article/details?id=49591213 1. 前言 在学习深度学习的过程中,主要参考了四份资料: 台湾大学的机器学习技法公开课: Andrew NG的深度学习教程: Li feifei的CNN教程: caffe官网的教程: 对比过这几份资料,突然间产生一个困惑:台大和Andrew的教程中用了很大的篇幅介绍了无监督的自编码神经网络,但在Li feifei的教程和caffe的实现中几乎没有涉及.当时一直搞不清这种现象的原因,直到翻阅了深度

极大似然估计(Maximum Likelihood)与无监督

1. 极大似然与最大概率 因为不是科班出身,所以最初接触极大似然的时候,总是很奇怪为什么叫极大似然,而不直接叫做最大概率? 后来才知道极大似然是用来估计未知参数的,而最大概率的表述更适合于已知参数的情况下,求解出现最大概率的变量的,举例如下: Max L(θ) = θ1x1+θ2x2+θ3x3 Max P(x) = θ1x1+θ2x2+θ3x3 Max L(θ)是拥有多组观测样本X时,估计θ参数的方法,而Max P(x)正好相反,是已知θ时,求解什么样的x出现会使得P最大. 2.  极大似然与无

【转】有监督训练 & 无监督训练

原文链接:http://m.blog.csdn.net/article/details?id=49591213 1. 前言 在学习深度学习的过程中,主要参考了四份资料: 台湾大学的机器学习技法公开课: Andrew NG的深度学习教程: Li feifei的CNN教程: caffe官网的教程: 对比过这几份资料,突然间产生一个困惑:台大和Andrew的教程中用了很大的篇幅介绍了无监督的自编码神经网络,但在Li feifei的教程和caffe的实现中几乎没有涉及.当时一直搞不清这种现象的原因,直到

深度学习之无监督训练

最近看了一下深度学习的表征学习,总结并记录与一下学习笔记. 1.在标签数据集中做的监督学习容易导致过拟合,半监督学习由于可以从无标签数据集中学习,可以有一定概率化解这种情况. 2.深度学习所使用的算法不能太复杂,否则会加大计算复杂度和工作量. 3.逐层贪婪的无监督预训练有这几个特点: (1)贪婪:基于贪婪算法,独立优化问题解的各方面,但是每次只优化一个方面,而不是同时同步全局优化. (2)逐层:各个独立方面可以看做网络的每一层,每次训练的第i层,都会固定前面的所有层. (3)无监督:每次训练都是

将句子表示为向量(上):无监督句子表示学习(sentence embedding)

1. 引言 word emedding技术如word2vec,glove等已经广泛应用于NLP,极大地推动了NLP的发展.既然词可以embedding,句子也应该可以(其实,万物皆可embedding,Embedding is All You Need ^_^).近年来(2014-2018),许多研究者在研究如何进行句子表示学习,从而获得质量较高的句子向量(sentence embedding).事实上,sentence embedding在信息检索,句子匹配,句子分类等任务上均有广泛应用,并且

CNN+ Auto-Encoder 实现无监督Sentence Embedding ( 基于Tensorflow)

原文链接:http://tecdat.cn/?p=9322 前言 这篇文章会利用到上一篇: 基于Spark /Tensorflow使用CNN处理NLP的尝试的数据预处理部分,也就是如何将任意一段长度的话表征为一个2维数组. 本文完整的代码在这: autoencoder-sentence-similarity.py 基本思路是,通过编码解码网络(有点类似微软之前提出的对偶学习),先对句子进行编码,然后进行解码,解码后的语句要和原来的句子尽可能的接近.训练完成后,我们就可以将任意一个句子进行编码为一

【转载】 无监督特征学习——Unsupervised feature learning and deep learning

无监督特征学习——Unsupervised feature learning and deep learning 分类: Compression Computer Vision Machine Learning 杂感2012-07-31 15:48 36848人阅读 评论(61) 收藏 举报 目录(?)[+] 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accurac

itorch无监督聚类

cmd = torch.CmdLine() cmd:text() cmd:text()用来在terminal上显示运行信息 cmd:option('-dir', 'outputs', 'subdirectory to save experiments in') cmd:option用来接受运行时的参数,第一个是参数名称,第二个是默认输入参数,第三个是备注. 1. 处理数据: dofile '1_data.lua' dofile和require的功能差不多,不过require不会重新加载,dofi

有监督和无监督的特征选择方法

特征选择实质上包括两个部分:特征词的选择和特征词权重的计算. 特征词选择的方法分为有监督的方法和无监督的方法. 有监督的方法包括IG和CHI,无监督的方法包括Document   Frequency (DF),  Term  Strength  (TS)和 Entropy-based  (En). 可以参考https://www.aaai.org/Papers/ICML/2003/ICML03-065.pdf