[离散时间信号处理学习笔记] 10. z变换与LTI系统

我们前面讨论了z变换,其实也是为了利用z变换分析LTI系统。

利用z变换得到LTI系统的单位脉冲响应

对于用差分方程描述的LTI系统而言,z变换将十分有用。有如下形式的差分方程:

$\displaystyle{ y[n] = –\sum_{k=1}^{N}\left(\frac{a_k}{a_0}\right)y[n-k]+\sum_{k=0}^{M}\left(\frac{b_k}{a_0}\right)x[n-k] }$

我们可以通过z变换得到上述式子的单位脉冲响应。

等式两边进行z变换

$\begin{align*}
Y(z)
&=z\left\{-\sum_{k=1}^{N} \left( \frac{a_k}{a_0} \right)y[n-k]+\sum_{k=0}^{M}\left(\frac{b_k}{a_0}\right)x[n-k]\right\}\\
&=z\left\{-\sum_{k=1}^{N} \left( \frac{a_k}{a_0} \right)y[n-k]\right\}+z\left\{\sum_{k=0}^{M}\left(\frac{b_k}{a_0}\right)x[n-k]\right\}\quad z\ linearity\ property\\
&=-\sum_{k=1}^{N} \left( \frac{a_k}{a_0} \right)z^{-k}Y(z) + \sum_{k=0}^{M}\left(\frac{b_k}{a_0}\right)z^{-k}X(z) \quad z\ time\ shift\ property\\
\end{align*}$

整理后可以得到

$Y(z)=\left(\frac{\displaystyle{ \sum_{k=0}^{M}b_kz^{-k} }}{\displaystyle{\sum_{k=1}^{N}a_kz^{-k}}} \right )X(z)$

另外,我们知道LTI系统是通过卷积来定义的

$\displaystyle{ y[n] = h[n]*x[n] }$

等式两边进行z变换,可以得到

$Y(z) = H(z)X(z)$

因此有

$H(z) = \frac{\displaystyle{ \sum_{k=0}^{M}b_kz^{-k} }}{\displaystyle{\sum_{k=1}^{N}a_kz^{-k}}}$

我们对$H(z)$进行z逆变换即可得到单位脉冲响应$h[n]$。$H(z)$被称为系统函数

因果LTI系统的一些z变换特性

此外,我们这里讨论的差分方程是因果的,即有

  • 系统满足初始松弛条件,也就是说如果输入为$x[n]=0,n< 0$,有

    $y[-N] = y[-N+1]=\cdot\cdot\cdot=y[-1]=0$

  • 因果LTI系统的单位脉冲响应满足$h[n]=0,n<0$,那么系统函数$H(z)$的收敛域呈现$|z|>R$。

原文地址:https://www.cnblogs.com/TaigaCon/p/8325840.html

时间: 2024-11-05 21:37:36

[离散时间信号处理学习笔记] 10. z变换与LTI系统的相关文章

[离散时间信号处理学习笔记] 9. z变换性质

z变换描述 $x[n] \stackrel{\mathcal{Z}}{\longleftrightarrow}X(z) ,\quad ROC=R_x$ 序列$x[n]$经过z变换后得到复变函数$X(z)$,该函数的收敛域为$R_x$ 线性 z变换的线性性质 $ax_1[n]+bx_2[n] \stackrel{\mathcal{Z}}{\longleftrightarrow} aX_1(z)+bX_2(z),\quad ROC\ contains\ R_{x_1}\cap R_{x_2}$ 证明

[离散时间信号处理学习笔记] 8. z逆变换

z逆变换的计算为下面的复数闭合曲线积分: $x[n] = \displaystyle{\frac{1}{2\pi j}}\oint_{C}X(z)z^{n-1}dz$ 式中$C$表示的是收敛域内的一条闭合曲线.该积分表达式可以利用复数变量理论下的柯西积分定理推导得到.不过本门课程用不上这条式子,因为在离散LTI系统分析中所遇到的典型序列和z变换,有如下更简单的z逆变换求解办法. 观察法(查表) 下面是一个常见序列的z变换表格,通过查表可以由z变换所得的函数反过来求得原序列 Sequence Tr

[离散时间信号处理学习笔记] 11. 连续时间信号的采样与重构

这一节主要讨论采样定理,在<傅里叶变换及其应用及其学习笔记>中有进行过推导与讲解,因此下面的内容也大同小异.不过如果是从<离散时间信号处理>这一本书的内容开始学习到这一节,则应先学习本文内容所需要的一些前置知识:傅里叶变换(连续时间),主要用到的是脉冲函数$\delta$,以及周期脉冲函数Ш的傅里叶变换与相关性质. 周期采样 假设有连续信号$x_c(t)$,我们需要通过对该信号进行采样才能得到离散信号,即样本序列$x[n]$.连续信号与离散信号有以下关系: $x[n] = x_c(

[离散时间信号处理学习笔记] 14. 多采样率信号处理

多采样率信号处理一般是指利用增采样.减采样.压缩器和扩张器等方式来提高信号处理系统效率的技术(These multirate techniques refer in general to utilizing upsampling, downsampling, compressors, and expanders in a variety of ways to increase the efficiency of signal-processing systems. )本文章主要讨论多采样率技术中

[离散时间信号处理学习笔记] 12. 连续时间信号的离散时间处理以及离散时间信号的连续时间处理

连续时间信号与离散时间信号之间的关系 下表为各符号的解释 Symbol FT DTFT Info $x_c(t)$ $X_c(j\Omega)$ - 连续时间信号 $x[n]$ - $X(e^{j\omega})$ 离散时间信号 $s(t)$ $S(j\Omega)$ - 周期脉冲函数.即采样函数 $x_s(t)$ $X_s(j\Omega)$ - 信号周期采样的数学表示 $\Omega_N$ - - 奈奎斯特频率,也就是带限信号的受限频率 $\Omega_s$ - - 采样频率 $T$ - -

[离散时间信号处理学习笔记] 2. 线性时不变系统

线性时不变系统的定义 线性时不变系统(LTI)是离散时间系统中特别重要的一种系统,该系统包含线性以及时不变性,用卷积来表征. 前面有讲过序列$x[n]$可以表示成幅度加权的延迟单位样本序列的和的形式 $x[n] = \displaystyle{ \sum_{k=-\infty}^{\infty}x[k]\delta[n-k] }$ 因此离散时间系统可以表示成如下形式 $y[n] = T\left\{ \displaystyle{ \sum_{k=-\infty}^{\infty}x[k]\del

数字语音信号处理学习笔记——语音信号的同态处理(2)

5.4 复倒谱和倒谱 定义       设信号x(n)的z变换为X(z) = z[x(n)],其对数为: (1) 那么的逆z变换可写成: (2) 取(1)式则有 (3) 于是式子(2)则可以写成       (4) 则式子(4)即为信号x(n)的复倒谱的定义.因为一般为复数,故称为复倒谱.如果对的绝对值取对数,得 (5) 则为实数,由此求出的倒频谱c(n)为实倒谱,简称为倒谱,即 (6) 在(3)式中,实部是可以取唯一值的,但对于虚部,会引起唯一性问题,因此要求相角为w的连续奇函数. 性质: 为

数字语音信号处理学习笔记——语音信号的短时时域分析(1)

3.1 概述 语音信号是一种非平稳的时变信号,它携带着各种信息.在语音编码.语音合成.语音识别和语音增强等语音处理中都需要提取语音中包含的各种信息.一般而言语音处理的目的有两种:一种是对语音信号进行分析,提取特征参数,用于后续处理:另一种是加工语音信号,例如在语音增强中对含噪语音进行背景噪声抑制,以获得相对"干净"的语音:在语音合成方中需要对分段语音进行拼接平滑,获得主观音质较高的合成语音,这方面的应用同样是建立在分析并提取语音信号信息的基础上的.总之,语音信号分析的目的就在于方便有效

数字语音信号处理学习笔记——绪论(2)

1.2.2 语音编码 语音编码的目的是在保证一定语音质量的前提下,尽可能降低编码比特率,以节省频率资源. 语音编码技术的鼻祖: 研究开始于1939年军事保密通信的需要,贝尔电话实验室的Homer Dudley提出并实现了在低频带宽电话电报电缆上传输语音信号的通道声码器. 20世纪70年代:国际电联(ITU-T,原CCITT)64kbit/s脉冲编码调制(PCM)语音编码算法的G.711建议,它被广泛应用于数字通信.数字交换机等领域,从而占据统治地位. 1980年:美国政府公布了一种2.4kbit