机器学习的数学基础 - 期望、方差、协方差

期望

方差

协方差

原文地址:https://www.cnblogs.com/DicksonJYL/p/9547352.html

时间: 2024-10-07 05:24:31

机器学习的数学基础 - 期望、方差、协方差的相关文章

机器学习的数学基础(1)--Dirichlet分布

机器学习的数学基础(1)--Dirichlet分布 这一系列(机器学习的数学基础)主要包括目前学习过程中回过头复习的基础数学知识的总结. 基础知识:conjugate priors共轭先验 共轭先验是指这样一种概率密度:它使得后验概率的密度函数与先验概率的密度函数具有相同的函数形式.它极大地简化了贝叶斯分析. 如何解释这句话.由于 P(u|D) = p(D|u)p(u)/p(D)   (1.0式) 其中D是给定的一个样本集合,因此对其来说p(D)是一个确定的值,可以理解为一个常数.P(u|D)是

(转)机器学习的数学基础(1)--Dirichlet分布

转http://blog.csdn.net/jwh_bupt/article/details/8841644 这一系列(机器学习的数学基础)主要包括目前学习过程中回过头复习的基础数学知识的总结. 基础知识:conjugate priors共轭先验 共轭先验是指这样一种概率密度:它使得后验概率的密度函数与先验概率的密度函数具有相同的函数形式.它极大地简化了贝叶斯分析. 如何解释这句话.由于 P(u|D) = p(D|u)p(u)/p(D)   (1.0式) 其中D是给定的一个样本集合,因此对其来说

方差 协方差

[方差 协方差]方差 variance协方差 covariancehttps://en.wikipedia.org/wiki/Variance方差 一个随机变量的方差描述的是它的离散程度,一个实随机变量的方差,也成为它的二阶矩或二阶中心动差.Informally, it measures how far a set of (random) numbers are spread out from their average value. Variance has a central role in

机器学习的数学基础

一.概述 我们知道,机器学习的特点就是:以计算机为工具和平台,以数据为研究对象,以学习方法为中心:是概率论.线性代数.数值计算.信息论.最优化理论和计算机科学等多个领域的交叉学科.所以本文就先介绍一下机器学习涉及到的一些最常用的的数学知识. 二.线性代数 2-1.标量 一个标量就是一个单独的数,一般用小写的的变量名称表示. 2-2.向量 一个向量就是一列数,这些数是有序排列的.用过次序中的索引,我们可以确定每个单独的数.通常会赋予向量粗体的小写名称.当我们需要明确表示向量中的元素时,我们会将元素

机器学习数学系列(1):机器学习与数学基础知识

目录: 机器学习基础: 机器学习的分类与一般思路 微积分基础: 泰勒公式,导数与梯度 概率与统计基础: 概率公式.常见分布.常见统计量 线性代数基础: 矩阵乘法的几何意义 这是一张非常著名的图,请仔细挖掘其信息量.以期它在整体上指引我们的学习. 1 机器学习基础 1.1 机器学习分类 有监督学习.无监督学习.半监督学习的概念自行了解一下,不再赘述,简单贴3幅图,自行比对.       1.2 机器学习的一般思路 得分函数: 损失的函数的最优化问题: (左)非凸函数               

机器学习:2.机器学习相关数学基础

本周任务: 请确保熟悉并理解机器学习数学部分常用相关概念: 1.高等数学 1)函数 2)极限 3)导数 4)极值和最值 5)泰勒级数 6)梯度 7)梯度下降 2.线性代数 1)基本概念 2)行列式 3)矩阵 4)最小二乘法 5)向量的线性相关性 3.概率论 1)事件 2)排列组合 3)概率 4)贝叶斯定理 5)概率分布 6)期望和方差 7)参数估计 2.本周视频学习内容:https://www.bilibili.com/video/BV1Tb411H7uC?p=2 1)P2 概率论与贝叶斯先验

第二次-机器学习相关数学基础

.本周视频学习内容:https://www.bilibili.com/video/BV1Tb411H7uC?p=2 1)P2 概率论与贝叶斯先验 2)P3 矩阵和线性代数 机器学习是一门多领域交叉学科,涉及较多的数学知识,本节课知识之前都有学过,这次根据重点重新梳理一遍,一定要多加重视.通过观看视频,大家对课程的数学基础部分加深印象. 建议大家边看边做笔记,记录要点及所在时间点,以便有必要的时候回看.学习笔记也是作业的一部分. 3.作业要求: 1)贴上视频学习笔记,要求真实,不要抄袭,可以手写拍

一起啃PRML - 1.2.2 Expectations and covariances 期望和协方差

@copyright 转载请注明出处 http://www.cnblogs.com/chxer/ 涉及到概率的一个重要的操作是寻找函数的加权平均值.在概率分布p(x)下,函数f(x)的平均值被称为f(x)的期望(expectation),记作E[f].对于一个离散变量,它的定义为: 因此平均值根据x的不同值的相对概率加权.在连续变量的情形下,期望以对应的概率密度的积分的形式表示: 类似的,我们有“条件期望”.无非就是把边缘概率变成条件概率. 在连续变量的情况下,我们把求和改成积分就好了. 如果我

机器学习相关数学基础lll

1.高等数学 1)函数 2)极限 3)导数 4)极值和最值 5)泰勒级数 6)梯度 7)梯度下降 2.线性代数 1)基本概念 2)行列式 3)矩阵 4)最小二乘法 5)向量的线性相关性 3.概率论 1)事件 2)排列组合 3)概率 4)贝叶斯定理 5)概率分布 6)期望和方差 7)参数估计 2.本周视频学习内容: 需要一个种子 原文地址:https://www.cnblogs.com/ly888/p/12694180.html