TensorFlow(六):tensorboard网络结构

# MNIST数据集 手写数字
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data

# 载入数据集
mnist=input_data.read_data_sets(‘MNIST_data‘,one_hot=True)
# 每个批次的大小
batch_size=100
# 计算一共有多少个批次
n_batch=mnist.train.num_examples//batch_size

# 命名空间
with tf.name_scope(‘input‘):
    # 定义两个placeholder
    x=tf.placeholder(tf.float32,[None,784],name=‘x-input‘)
    y=tf.placeholder(tf.float32,[None,10],name=‘y-input‘)

with tf.name_scope(‘layer‘):
    # 创建一个简单的神经网络
    with tf.name_scope(‘wights‘):
        W=tf.Variable(tf.zeros([784,10]),name=‘W‘)
    with tf.name_scope(‘biases‘):
        b=tf.Variable(tf.zeros([10]),name=‘b‘)
    with tf.name_scope(‘wx_plus_b‘):
        wx_plus_b=tf.matmul(x,W)+b
    with tf.name_scope(‘softmax‘):
        prediction=tf.nn.softmax(wx_plus_b)

with tf.name_scope(‘loss‘):
    # 二次代价函数
    loss=tf.reduce_mean(tf.square(y-prediction))
with tf.name_scope(‘train‘):
    # 使用梯度下降法
    train_step=tf.train.GradientDescentOptimizer(0.2).minimize(loss)

# 初始化变量
init=tf.global_variables_initializer()

with tf.name_scope(‘accuracy‘):
    with tf.name_scope(‘correct_prediction‘):
        # 求最大值在哪个位置,结果存放在一个布尔值列表中
        correct_prediction=tf.equal(tf.argmax(y,1),tf.argmax(prediction,1))# argmax返回一维张量中最大值所在的位置
    with tf.name_scope(‘accuracy‘):
        # 求准确率
        accuracy=tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) # cast作用是将布尔值转换为浮点型。
with tf.Session() as sess:
    sess.run(init)
    writer=tf.summary.FileWriter(‘logs/‘,sess.graph) # 写入文件

    for epoch in range(1):
        for batch in range(n_batch):
            batch_xs,batch_ys=mnist.train.next_batch(batch_size)
            sess.run(train_step,feed_dict={x:batch_xs,y:batch_ys})
        #求准确率
        acc=sess.run(accuracy,feed_dict={x:mnist.test.images,y:mnist.test.labels})
        print(‘Iter:‘+str(epoch)+‘,Testing Accuracy:‘+str(acc))
        

注意:执行后会在当前目录下生成logs文件夹。打开cmd,进入当前文件夹。输入:tensorboard --logdir=C:\Users\FELIX\Desktop\tensor学习\logs

然后打开浏览器,输入图中的网址,就可以查看了。

有好多TensorFlow中的信息等待探索。

原文地址:https://www.cnblogs.com/felixwang2/p/9184301.html

时间: 2024-11-01 11:33:45

TensorFlow(六):tensorboard网络结构的相关文章

学习TensorFlow,TensorBoard可视化网络结构和参数

在学习深度网络框架的过程中,我们发现一个问题,就是如何输出各层网络参数,用于更好地理解,调试和优化网络?针对这个问题,TensorFlow开发了一个特别有用的可视化工具包:TensorBoard,既可以显示网络结构,又可以显示训练和测试过程中各层参数的变化情况.本博文分为四个部分,第一部分介绍相关函数,第二部分是代码测试,第三部分是运行结果,第四部分介绍相关参考资料. 一. 相关函数 TensorBoard的输入是tensorflow保存summary data的日志文件.日志文件名的形式如:e

tensorflow使用tensorboard实现数据可视化

撰写时间:2017.5.17 网上关于这方面的教程很多,不过都偏向与如何整理图,就是通过增加命名域使得图变得好看.下面主要讲解如何搭建起来tensorboard. 系统环境:ubuntu14.04,python2.7,tensorflow-0.11 创建summary op 1.需要在图中创建summary的操作.常用的summary操作有tf.summary.scalar和tf.summary.histogram. 注:图中必须存在summary节点.不然会报错,如下图报错 merge合并操作

莫烦TENSORFLOW(6)-tensorboard

import tensorflow as tfimport numpy as np def add_layer(inputs,in_size,out_size,n_layer,activation_function=None): # add one more layer and return the output of this layer layer_name = 'layer%s' % n_layer with tf.name_scope('layer'): with tf.name_sco

基于TensorFlow进行TensorBoard可视化

1 # -*- coding: utf-8 -*- 2 """ 3 Created on Thu Nov 1 17:51:28 2018 4 5 @author: zhen 6 """ 7 8 import tensorflow as tf 9 from tensorflow.examples.tutorials.mnist import input_data 10 11 max_steps = 1000 12 learning_rate = 0

tensorflow入门教程

1. LSTM 大学之道,在明明德的博客: (译)理解 LSTM 网络 (Understanding LSTM Networks by colah) TensorFlow入门(五)多层 LSTM 通俗易懂版 TensorFlow入门(三)多层 CNNs 实现 mnist分类 另一个博客,写的代码很好: TensorFlow 实现多层 LSTM 的 MNIST 分类 + 可视化 博客:写的很好 用tensorflow搭建RNN(LSTM)进行MNIST 手写数字辨识 博客: Tensorflow

tensorflow训练Oxford-IIIT Pets

参考链接https://github.com/tensorflow/models/blob/master/object_detection/g3doc/running_pets.md 先参考https://github.com/tensorflow/models/blob/master/object_detection/g3doc/installation.md安装好环境 以下默认都在models目录下操作 mkdir petstrain 注意PYTHONPATH库路径的设置 # From te

已经安装cuda但是tensorflow仍然使用cpu加速的问题

安装了keras.theano之后,一直以为自己用的GPU,今天找到一个小程序测试一下,竟然一直在用CPU(黑人问号) from theano import function, config, shared, sandbox import theano.tensor as T import numpy import time vlen = 10 * 30 * 768 # 10 x #cores x # threads per core iters = 1000 rng = numpy.rando

Tensorflow word2vec+manage experiments

Lecture note 5: word2vec + manage experiments Word2vec Most of you are probably already familiar with word embedding and understand the importance of a model like word2vec. For those who aren't, Stanford CS 224N's lecture on word vectors is a great r

tensorflow加载embedding模型进行可视化

1.功能 采用python的gensim模块训练的word2vec模型,然后采用tensorflow读取模型可视化embedding向量 ps:采用C++版本训练的w2v模型,python的gensim模块读不了. 2.python训练word2vec模型代码 import multiprocessing from gensim.models.word2vec import Word2Vec, LineSentence print('开始训练') train_file = "/tmp/train