Popular Cows
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 29642 | Accepted: 11996 |
Description
Every cow‘s dream is to become the most popular cow in the herd. In a herd of N (1 <= N <= 10,000) cows, you are given up to M (1 <= M <= 50,000) ordered pairs of the form (A, B) that tell you that cow A thinks that cow B is popular. Since popularity is transitive, if A thinks B is popular and B thinks C is popular, then A will also think that C is
popular, even if this is not explicitly specified by an ordered pair in the input. Your task is to compute the number of cows that are considered popular by every other cow.
Input
* Line 1: Two space-separated integers, N and M
* Lines 2..1+M: Two space-separated numbers A and B, meaning that A thinks B is popular.
Output
* Line 1: A single integer that is the number of cows who are considered popular by every other cow.
Sample Input
3 3 1 2 2 1 2 3
Sample Output
1
Hint
Cow 3 is the only cow of high popularity.
Source
——————————我是分割线————————————————————————————————
图的强联通分量。
题目大意:
有n只牛,牛A认为牛B很牛,牛B认为牛C很牛。
给你M个关系(谁认为谁牛),求大家都认为它很牛的牛有几只。
p.s.如果牛A认为牛B很牛,牛B认为牛C很牛。那么我们就认为牛A认为牛C很牛。
1 #include<iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<cmath> 5 #include<algorithm> 6 #include<queue> 7 #include<cstdlib> 8 #include<iomanip> 9 #include<cassert> 10 #include<climits> 11 #define MAXN 10001 12 #define MAXM 50001 13 #define inf 0x7fffffff 14 #define F(i,j,k) for(int i=j;i<=k;i++) 15 #define M(a,b) memset(a,b,sizeof(a)) 16 using namespace std; 17 inline int read(){ 18 int x=0,f=1;char ch=getchar(); 19 while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘)f=-1;ch=getchar();} 20 while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘;ch=getchar();} 21 return x*f; 22 } 23 struct node 24 { 25 int to,next; 26 }edge[MAXM]; 27 int n,m,head[MAXN],dfn[MAXN],low[MAXN],stack1[MAXN],num[MAXN],du[MAXN],vis[MAXN],cnt,time=1,top,cut; 28 int tim,tp,dcnt,sum; 29 void addedge(int u,int v) 30 { 31 edge[cnt].to=v; 32 edge[cnt].next=head[u]; 33 head[u]=cnt; 34 cnt++; 35 } 36 void dfs(int u,int fa) 37 { 38 dfn[u]=time; 39 low[u]=time; 40 time++; 41 vis[u]=1; 42 stack1[top]=u; 43 top++; 44 for(int i=head[u]; i!=-1; i=edge[i].next) 45 { 46 int v=edge[i].to; 47 if(!vis[v]) 48 { 49 dfs(v,u); 50 low[u]=min(low[u],low[v]); 51 } 52 else if(vis[v]) 53 { 54 low[u]=min(low[u],dfn[v]); 55 } 56 } 57 if(low[u]==dfn[u]) 58 { 59 cut++; 60 while(top>0&&stack1[top]!=u) 61 { 62 top--; 63 vis[stack1[top]]=2; 64 num[stack1[top]]=cut; 65 } 66 } 67 } 68 int main() 69 { 70 std::ios::sync_with_stdio(false);//cout<<setiosflags(ios::fixed)<<setprecision(1)<<y; 71 // freopen("data.in","r",stdin); 72 // freopen("data.out","w",stdout); 73 // int i,u,v; 74 cin>>n>>m; 75 M(head,-1); 76 F(i,0,m-1) 77 { 78 int a,b; 79 cin>>a>>b; 80 addedge(a,b); 81 } 82 F(i,1,n) 83 { 84 if(!vis[i]) dfs(i,0); 85 } 86 F(i,1,n)for(int j=head[i];j!=-1;j=edge[j].next) 87 { 88 if(num[i]!=num[edge[j].to]) 89 { 90 du[num[i]]++; 91 } 92 } 93 int x;sum=0; 94 F(i,1,cut) 95 { 96 if(!du[i]) 97 { 98 sum++; 99 x=i; 100 } 101 } 102 if(sum==1) 103 { 104 sum=0; 105 F(i,1,n) 106 { 107 if(num[i]==x) 108 { 109 sum++; 110 } 111 } 112 cout<<sum<<endl; 113 } 114 else cout<<"0"<<endl; 115 return 0; 116 }