HGsuspector: Scalable Collective Fraud Detection in Heterogeneous Graphs

HGsuspector:可扩展的集体欺诈检测异构图

论文核心思想:

      (1)将定向异构图分解为一组二分图

      (2)在每个连接得二分图上定义一个度量,并计算它的得分,它融合了结构信息和事件概率。

论文的步骤:

      (1)论述可简化异构图的可行性

      (2)提出了连接二分图的度量标准

      (3)提出了密度函数p(i, j)用于增强对于检验子图的能力,并且列出了几个边缘密度函数,对于每个边缘密度函数,它对应于欺诈模式检测到的具体的问题域

      (4)HGsuspector具有非常高的效率,可以处理具有十亿个节点和边缘的大图,并可计算连通的二分图的分数。

论文写作路径:

      (1)陈述最近关于基于图的异常检测算法的工作

      (2)提出HGsuspector的算法

      (3)和其它的算法进行比较

      (4)对提出的算法进行总结并讨论一些相关的工作

原文地址:https://www.cnblogs.com/wangmengzhu/p/10806869.html

时间: 2024-11-01 11:53:40

HGsuspector: Scalable Collective Fraud Detection in Heterogeneous Graphs的相关文章

Real Time Credit Card Fraud Detection with Apache Spark and Event Streaming

https://mapr.com/blog/real-time-credit-card-fraud-detection-apache-spark-and-event-streaming/ Editor's Note: Have questions about the topics discussed in this post? Search for answers and post questions in the Converge Community. In this post we are

google detection

paper: Scalable, High-Quality Object Detection ILSVRC14上,detection刷到55.7%的MAP,google插入的地方,别人倍感压力啊. 总体结果,其实我觉得很好的地方是,时间短,效果也很不错呢.就只用multibox就能达到50.7%的MAP,相当赞啊. 但是,用selective search的效果是51.3%,也是令人震惊啊. 总体multibox的思路就是网络的输入一副整图,输出有两个,一个输出是confidence,一个输出是

What makes for effective detection proposals? 论文解析

1 介绍(INTRODUCTION) 本文主要对最近的 proposal 检测方法做一个总结和评价.主要是下面这些方法.  2 Detection Proposal 方法(DETECTION PROPOSAL METHODS) 作者将 Detection Proposal 分为两类,grouping method (将图片分为碎片,最后聚合)和 window scoring method (对分成的大量窗口打分). 2.1 分组 proposal 方法(Grouping proposal met

KDD2015,Accepted Papers

Accepted Papers by Session Research Session RT01: Social and Graphs 1Tuesday 10:20 am–12:00 pm | Level 3 – Ballroom AChair: Tanya Berger-Wolf Efficient Algorithms for Public-Private Social NetworksFlavio Chierichetti,Sapienza University of Rome; Ales

infoq - neo4j graph db

My name is Charles Humble and I am here at QCon New York 2014 with Ian Robinson. Ian, can you introduce yourself to the InfoQ community? Hello, I am Ian Robinson, I am engineer at Neo Technology, I am based in London and I work on the Neo4j graph dat

(转) Learning from Imbalanced Classes

Learning from Imbalanced Classes AUGUST 25TH, 2016 If you’re fresh from a machine learning course, chances are most of the datasets you used were fairly easy. Among other things, when you built classifiers, the example classes werebalanced, meaning t

Machine and Deep Learning with Python

Machine and Deep Learning with Python Education Tutorials and courses Supervised learning superstitions cheat sheet Introduction to Deep Learning with Python How to implement a neural network How to build and run your first deep learning network Neur

Big Data Analytics for Security(Big Data Analytics for Security Intelligence)

http://www.infoq.com/articles/bigdata-analytics-for-security This article first appeared in the IEEE Security & Privacymagazine and is brought to you by InfoQ & IEEE Computer Society. Enterprises routinely collect terabytes of security-relevant da

(转)分布式深度学习系统构建 简介 Distributed Deep Learning

HOME ABOUT CONTACT SUBSCRIBE VIA RSS DEEP LEARNING FOR ENTERPRISE Distributed Deep Learning, Part 1: An Introduction to Distributed Training of Neural Networks Oct 3, 2016 3:00:00 AM / by Alex Black and Vyacheslav Kokorin Tweet inShare27   This post