大数据入门学习必读好书推荐,请收藏!

身处于一个大数据时代,大数据无疑是近期最时髦的词汇了。

不管是云计算、社交网络,还是物联网、移动互联网和智慧城市,都要与大数据搭上联系。

随着云计算、移动互联网和物联网等新一代信息技术的创新和应用普及。学习大数据,除了网课,一些经典的技术书籍是非常实用且有帮助的。

为了跟上技术更迭的节奏,不落人后,最好的方式是继续刷新自己的知识,同时保持上手的经验。在这行业中要取得成功,需要完美的项目经验和技能组合。尽管网上有大量的资源,我们仍要专门推荐一些好的实体书籍。

大数据书单

《Machine Learning Yearning》

by 吴恩达

由现代数据,大数据和数据科学开发并生产出的机器学习系统已经不是什么秘密。虽然它们不一定是同义词,但却是互相关联的,因此如果你在数据行业工作,那么提高对机器学习的理解和认识是个不错的想法。

很多初学者,对大数据的概念都是模糊不清的,大数据是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,想深入了解,想学习的同学欢迎加入大数据学习qq群:458345782,有大量干货(零基础以及进阶的经典实战)分享给大家,并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系。
从本书中你可以学到一些洞察能力,例如你应该多长时间收集一次训练数据集,如何使用端到端的深度学习,以及如何利用你正在创建的系统来共享数据和统计信息。

《数据之巅》

by涂子沛

这本书中,从小数据时代到大数据的崛起,作者以宏大的历史观、文化观、大数据观,给我们描绘了一幅数据科学、智慧文化的全景图。

《为数据而生》

by周涛

书中分别阐述在大数据1.0、大数据2.0和大数据3.0时代下,相对应的数据分析需要做到分析、外化、集成。作者提供了一套基本的大数据分析框架:确定问题和指标, 清洗数据, 特征提取和选择, 模型训练, 模型融合。

《智能时代》

by吴军

回顾了科学研究发展的四个范式,用实例证明了数据在科学发现中的位置。这本书作者分七章从不同角度对大数据进行介绍,分别以技术和思维方式的改变为主线,从工业革命这个角度嵌入,顺理成章的延伸出大数据与智能化,但是没有将过多笔墨放在技术的深究上,而是选择从应用层面体现大数据的理念。大数据应用则会***到各行各业,这正是作者的用心之处。

这本书作者分七章从不同角度对大数据进行介绍,分别以技术和思维方式的改变为主线,从工业革命这个角度嵌入,顺理成章的延伸出大数据与智能化,但是没有将过多笔墨放在技术的深究上,而是选择从应用层面体现大数据的理念。大数据应用则会***到各行各业,这正是作者的用心之处。

《Hadoop:权威指南》

by Tom White

Apache Hadoop是用于处理和管理大量数据的主要框架。任何从事编程或数据科学工作的人都有必要熟悉这个平台。事实上,这是开发可扩展系统最有效的方法之一。身为Hadoop顾问和Apache软件基金会成员的Tom White写了这本标准指南,其中包罗作者的个人见解和一些有用的资源。更重要的是,它将引导你完成Hadoop的设置并且过一遍整体流程。

Apache Spark是你可能需要花时间学习的另一个重要平台。

《预测分析》

by Eric Siegel

本书详细解释了如何获取多种形式的数据和信息,并将其转化为可实施的预测或见解的方法。本书的核心目的是帮助专业人员更好地了解他们的受众。你将学会如何识别他们购买的产品和服务,访问的地点,与他们产生共鸣的内容等等。

众所周知,数据科学家的工作是查看未经过滤的原始数据,并发现可用的趋势和模式。本书不仅可以帮助你做到这一点,而且还提出必要的预测算法来改进未来的操作和流程。本书可以算是预测分析的圣经。

《大拐点》

by Scott Stawski

本书对于了解当前数据分析和云计算行业的发展势头十分有帮助。特别值得注意的是,Stawski主要关注原始数据存储和挖掘系统、如何部署以及在现实世界中的使用情况。

它不仅是一个理论指南,还揭示了实际的工作系统,并且提到如何把相应模式套用到你的企业或公司。更重要的一点是,你可以从本书中清楚了解如何在组织内部署这些工具和平台。

《统计学习导论·基于R应用》

by Gareth James等人

统计学习和相关的方法是数据科学工作所必需的概念。这本教科书旨在帮助每个人——从本科到博士,了解这些统计概念。

当然,它也提供了一些很好的R-lab与练习,其中有详细的解释和攻略。你可以在学习阶段直接用它来练习数据科学。他还能在你的日常应用中作为工具书反复查阅。

《R语言预测实战》

by游皓麟

R语言横跨了金融、生物、医学、互联网等多个领域,主要用于统计、建模及可视化。由于上手快、效率高,备受技术人员青睐。预测是大数据挖掘的主要作用之一,借助R语言来做大数据预测,可以兼具效率与价值于一身。

市面上为数不多的系统讲解R语言预测专题的书籍,可以get到做R语言预测时的基本步骤和方法思路,还有更多技术细节

《商业中的数据分析》

by Foster Provost, Tom Fawcett

本书由著名数据科学专家Foster Provost和Tom Fawcett撰写,介绍了数据科学的基本原理,让你从收集的数据中提取有用的知识和业务价值所需的“数据分析思维”,并可帮助你了解当今使用的许多数据挖掘技术。

这本书有趣的地方,是会特别标记出较困难的技术部分,并深入浅出的介绍数据挖掘中的重要的几个概念:分类,聚类和回归。更重要的是书中包含了这些概念在商务上的的直接应用。

《数据科学实战》

by Cathy O‘Neil, Rachel Schutt

这本以哥伦比亚大学的数据科学入门课为基础,包含了Google,Microsoft和eBay等公司的数据科学家的经验,通过介绍案例研究和他们使用的代码的经历,分享了新的算法,方法和模型。

如果你熟悉线性代数,概率和统计,并具有编程经验,本书是你对数据科学的理想介绍。主题包括:统计推断、探索性数据分析和数据科学过程算法、垃圾邮件过滤器、朴素贝叶斯和数据处理逻辑回归、财务建模、推荐引擎和因果关系数据可视化、社交网络和数据新闻、数据工程、MapReduce。

《Show Me the Numbers》

by Stephen Few

在BI产业有30多年的经验之后,Stephen Few并不针对哪一种可视化工具进行钻研,而是从更高层次的去讨论,什么图形该怎么使用,来传达什么样的讯息是最有效的,以及数据分析产业的发展与趋势。

这本书中,他介绍了可视化的起源和背后的应用,为读者提供实际的设计指导,针对不同数据使用者的不同使用场景给出建议,在一些现在流行却有潜在问题的可视化设计上做出改进。

《精益数据分析》

by Alistair Croll / Benjamin Yoskovitz

本书延续了新创企业文化中MVP(Most Valuable Product)概念和商业画布架构,展示了如何利用数据的方式,分析六个产业中(电子商务、SaaS、免费移动应用、媒体网站、用户生成内容与双边市场)的数据,验证创业者自己的设想、找到真正的客户、打造能赚钱的产品,以及提升企业知名度。

有趣的地方是,就算新创企业的数据没有成熟企业来的多,作者认为每种不同的产业仍有必须关注的指标数字。根据这些数字新创公司可以更有效的管理和拓展生意。

很多初学者,对大数据的概念都是模糊不清的,大数据是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,想深入了解,想学习的同学欢迎加入大数据学习qq群:458345782,有大量干货(零基础以及进阶的经典实战)分享给大家,并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实战实用学习流程体系。

原文地址:https://blog.51cto.com/14217196/2368453

时间: 2024-11-05 04:53:30

大数据入门学习必读好书推荐,请收藏!的相关文章

大数据入门学习路线分享,请大家收下

大数据的学习技术点Hadoop核心(1) 分布式存储基石:HDFSHDFS简介 入门演示 构成及工作原理解析:数据块,NameNode, DataNode.数据写入与读取过程.数据复制.HA方案.文件类型. HDFS常用设置 Java API代码演示(2) 分布式计算基础:MapReduceMapReduce简介.编程模型.Java API 介绍.编程案例介绍.MapReduce调优(3) Hadoop集群资源管家:YARNYARN基本架构 资源调度过程 调度算法 YARN上的计算框架离线计算(

CSDN学霸课表——从应用解析到基础实战,大数据入门、晋级课程推荐

[大数据]Splunk企业级运维智能&大数据分析平台新手入门视频课程 讲师:张文星 本课程系Splunk入门系列课程,实战为主,实战中穿插相关概念和理论.课程包括Splunk基础知识.安装部署.数据采集和存储.数据可视化.创建Splunk应用等.数据分析和可视化部分基于两个案例,边动手边讲解. [Hadoop]Hadoop2.X 应用解析 讲师:李锋 通过学习Hadoop2.X的教程,使学员能够掌握Hadoop2的应用原理,对Hadoop2的体系结构有清晰的认识,并能够熟练部署Hadoop2的高

成都0基础学习hadoop怎么学?怎么进行大数据入门学习

学hadoop需要什么基础?没有基础怎么学习hadoop?怎么学习大数据?Hadoop作为大数据工业中的主引擎,Hadoop就像是大数据世的一把钥匙,想要进入数据世界,首先你得显得得到这把钥匙,才能打开大门.那么科多大数据带你来看看. 学hadoop需要什么基础?Hadoop是一个分布式计算架构,更重要的是它是一个可扩展的生态系统,像IBM,EMC,Amazon,微软,甲骨文等大型IT公司都已经有了基于Hadoop的商业化大数据产品.虽然现在还有比Hadoop更为先进的分布式架构(Dremel,

大数据入门学习之Hadoop技术优缺点

(1)Hadoop具有按位存储和处理数据能力的高可靠性. (2)Hadoop通过可用的计算机集群分配数据,完成存储和计算任务,这些集群可以方便地扩展到数以千计的节点中,具有高扩展性. (3)Hadoop能够在节点之间进行动态地移动数据,并保证各个节点的动态平衡,处理速度非常快,具有高效性. (4)Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分配,具有高容错性. .在入门学习大数据的过程当中有遇见学习,行业,缺乏系统学习路线,系统学习规划,欢迎你加入我的大数据学习交流裙:5

原 大数据入门学习,你要掌握这些技能

小编将此文献给对数据有热情,想长期从事此行业的年轻人,希望对你们有所启发,并快速调整思路和方向,让自己的职业生涯有更好的发展. 根据数据应用的不同阶段,本文将从底层到最终应用讨论这些数据人员的必要技能. 1.大数据平台 目前,它非常流行,数据源,各种酷的新技术,构建Hadoop,蜂巢,星火,Kylin,德鲁伊,Copy~,如果你想了解Java,很多平台都是用Java开发的. 目前,许多企业已经收集数据.对于传统的业务数据,传统的数据是完全足够的.但是对于用户行为和点击行为或者许多非结构化数据,如

大数据入门基础系列之初步认识大数据生态系统圈(博主推荐)

之前在微信公众平台里写过 大数据入门基础系列之初步认识hadoop生态系统圈 http://mp.weixin.qq.com/s/KE09U5AbFnEdwht44FGrOA 大数据入门基础系列之初步认识大数据生态系统圈 1.概述 最近收到一些同学和朋友的邮件,说能不能整理一下 Hadoop 生态圈的相关内容,然后分享一些,我觉得这是一个不错的提议,于是,花了一些业余时间整理了 Hadoop 的生态系统,并将其进行了归纳总结,进而将其以表格的形式进行了罗列.涉及的内容有以下几点: 分布式文件系统

大数据入门级学习攻略

数据科学并没有一个独立的学科体系,统计学,机器学习,数据挖掘,数据库,分布式计算,云计算,信息可视化等技术或方法来对付数据. 但从狭义上来看,我认为数据科学就是解决三个问题: 很多初学者,对大数据的概念都是模糊不清的,大数据是什么,能做什么,学的时候,该按照什么线路去学习,学完往哪方面发展,想深入了解,想学习的同学欢迎加入大数据学习qq群:458345782,有大量干货(零基础以及进阶的经典实战)分享给大家,并且有清华大学毕业的资深大数据讲师给大家免费授课,给大家分享目前国内最完整的大数据高端实

大数据最佳学习路线总结

一,题记 要说当下IT行业什么最火?ABC无出其右.所谓ABC者,AI + Big Data + Cloud也,即人工智能.大数据和云计算(云平台).每个领域目前都有行业领袖在引领前行,今天我们来讨论下大数据Big Data这个方向. 二,大数据里面的角色 角色一:大数据工程 大数据工程需要解决数据的定义.收集.计算与保存的工作,因此大数据工程师们在设计和部署这样的系统时首要考虑的是数据高可用的问题,即大数据工程系统需要实时地为下游业务系统或分析系统提供数据服务: 角色二:大数据分析 大数据分析

大数据入门小知识

之前写过大数据入门小知识和大数据入门小知识进阶篇,今天为大家带来大数据入门小知识高阶篇. 推荐一个大数据学习群 119599574晚上20:10都有一节[免费的]大数据直播课程,专注大数据分析方法,大数据编程,大数据仓库,大数据案例,人工智能,数据挖掘都是纯干货分享,你愿意来学习吗? 大数据入门小知识高阶篇,主要讲述的是因为大数据而衍生出来的一系列技术与科技创新. 说到因为大数据而衍生出来的一系列技术与科技创新,相信我们首先都会想到人工智能(Artificial Intelligence),英文