计算机起源的数学思想

实际上在离散数学的学习中,我们已经了解到这样的一些人物,乔治.布尔,康托,哥德尔,图灵,冯诺依曼。而我们实际的离散数学的教学中,本身太注重于知识本身的学习,而忽略了知识是如何被发现产生出来,以及不同的知识之间曾经的渊源和启发关系。而对于启迪思想来说,后者显然更为有力。

莱布尼茨之梦

早在17世纪的莱布尼茨就有一个伟大的构想,他希望可以将人类的思维像代数运算那样符号化,规则化,从而让笨的人通过掌握这样的规则变得聪明,更进一步的制造出可以进行思维运算的机器,将人类从思考中解放。从莱布尼茨为微积分所确定的依然在今天被沿用的符号中,我们可以看出他对符号具有良好的感觉,通过选择良好的符号,可以大大的简化运算的复杂性,甚至将这样的运算变成一种天然的过程。除了构想之外,莱布尼茨本身为了发展一种逻辑演算也进行了很多尝试,他得到的一些结果已经具有后来布尔的逻辑代数的雏形。

布尔的逻辑代数

19世纪的布尔,将逻辑代数化,发展出了逻辑代数成为后来计算机内部运算的逻辑基础。

在早期的研究中,布尔就已经认识到符号的力量,代数的力量正源于代表着量和运算的符号在几条基本规则的支配下体现出来的。后来,他开始思考能否将逻辑推理也像代数那样用符号和几条基本规则就可以完全表达。

布尔的逻辑体系,不仅包含了亚里士多德的逻辑体系,而且还超越了它,但是仍有无法表达的情形: 
所有失败的学生或者是糊涂的或者是懒惰的。

今天的布尔代数

回到今天,我们再看布尔再把逻辑转变成代数的过程中,所产生的逻辑代数在今天的计算机中扮演着什么样的作用。布尔代数只有1和0两个元素,not and or三种运算,用几张真值表就可以表达清楚。

弗雷格的突破与绝望

弗雷格的一生主要发表了这样三本著作:《概念演算--一种模仿算术语言构造的纯思维的符号语言》(1879)、《算术的基础--对数概念的逻辑数学研究》(1884)《算术的基本规律》(l卷 1893,2卷1903)。

其中概念演算,将普通数学中的一切演绎推理都包含在内,成为第一个完备的逻辑体系。布尔以普通代数为基础,用代数符号来表示逻辑关系。与此相反,弗雷格想以他的逻辑为基础而把代数构造出来。实际上这成为日后一个重要的学派"逻辑主义",在他们看来逻辑与数学的关系就像一门学科的基本部分和高等部分之间的关系。

弗雷格的逻辑体系,表现在今天就是我们数理逻辑中的命题演算和谓词演算(用数学的方法研究关于推理、证明等问题的学科就叫做数理逻辑。也叫做符号逻辑)。弗雷格第一次用精确的句法构造出形式化的人工语言,使得逻辑推理表示为机械演算即所谓的推理规则成为可能。从这个观点看,概念文字是我们今天使用的计算机程序设计语言的前身。

弗雷格希望可以自然数提出一种纯粹逻辑的理论,从而证明算术,微积分乃至一切数学都可以看成逻辑的一个分支。于是弗雷格便希望可以用纯逻辑的术语来定义自然数,然后再用他的逻辑导出它们的性质。例如3这个数将被解释为逻辑的一部分。弗雷格的思想是把3定义为所有元素数为3的集合的集合。实际上这就是《算术的基础--对数概念的逻辑数学研究》这部著作的主要内容。

然而正是这样的一些工作,1902年,年轻的伯特兰.罗素据此提出那个著名的罗素悖论。弗雷格的算术使用了集合的集合这样一种概念。罗素指出,用集合的集合进行推理很容易导致矛盾。罗素的悖论可以这样描述:如果一个集合是它自身的一个成员,那么就把集合成为异常的,否则它就是正常的。那么由所有正常集合组成的集合是正常还是异常的呢?

如果是正常的,那么它应该包含自身,这样它就应该是异常的。如果是异常的,那么它就不会包含自身,这样它就应该是正常的。无论哪个结果都导致了矛盾。实际上罗素构造这个悖论的方法,与之后哥德尔,图灵构造不可判定命题却有着神似的地方。然而这一矛盾却表明弗雷格构造的算术体系所基于的那些前提是靠不住的,并给弗雷格带来了巨大的打击。

虽然弗雷格的逻辑已经很完备,但仍然具有一些局限性。他的规则并没有提供判定某个结论能否从给定的前提中推导出来的计算步骤。另外能否找到一种计算方法,它能够说明在弗雷格的逻辑中某一推理是正确的呢?其结果是这样一则证明:没有这样的一般方法存在。然而正是在证明这样一条否定性的结论过程中,阿兰图灵发现原则上可以设计出一种通用机,它可以执行任何可能的计算。

弗雷格的研究开启语言哲学的大门,后来人们在寻找证明逻辑推理正确性的过程中,图灵发现了通用机,也就是今天计算机的数学模型。

大卫 希尔伯特

希尔伯特是20世纪的数学领袖,1900年他在数学家大会上指出的23个问题,其中第二个便是关于算术一致性的问题。即關於一個公理系統相容性的問題,也就是判定一個公理系統內的所命題是彼此相容無矛盾的,希爾伯特希望能以嚴謹的方式來證明任意公理系統內命題的相容性。

希尔伯特纲领所提出的主要问题就是算术一致性问题。为了解决这个问题,希尔伯特发展出了元数学,一致性证明将在元数学内部完成。1928年,希尔伯特和他的学生阿克曼出版了一本逻辑课本,书中提出了关于弗雷格<<概念文字>>的基本逻辑(后来被称为一阶逻辑)两个主要问题,一个就是,证明一阶逻辑的完备性,即任何一个从外部看来有效的公式都可以只用课本里提出规则从系统内部导出。第二个问题以希尔伯特的判定问题而闻名,即对于一个一阶逻辑的公式,如果找到一种方法,可以在定义明确有限步骤内判定这个公式是有效的。这两个问题分别为哥德尔和图灵解决,而在解决第二个问题的过程中,图灵提出了图灵机的概念。

后来在1928年的国际数学家大会上,希尔伯特又提出一个关于形式系统的问题,这个系统建立在把一阶逻辑应用于现在被称为皮亚诺算术或者PA的自然数公理系统的基础之上。希尔伯特希望可以证明PA是完备的,也就是说任何一个可以在PA中表出的命题或者可以在PA中被证明为真,或者可以被证明为假。两年后,这个问题被一个叫哥德尔的年轻人解决了,但答案却完全不像希尔伯特料想的那样。

https://www.douban.com/group/topic/8246901/

原文地址:https://www.cnblogs.com/feng9exe/p/10609847.html

时间: 2024-10-16 10:56:59

计算机起源的数学思想的相关文章

数学专业的数学与计算机专业的数学的比较(转)

 虾米大虾~~ 2011-09-20 11:01:54 计算机科学与技术这一门科学深深的吸引着我们这些同学们,上应用数学系已经有近三年了,自己也做了一些思考,原先不管是国内还是国外都喜欢把计算机系分为计算机软件理论.计算机系统.计算机技术与应用.后来又合到一起,变成了现在的计算机科学与技术.我一直认为计算机科学与技术这门专业,在本科阶段是不可能切分成计算机科学和计算机技术的,因为计算机科学需要相当多的实践,而实践需要技术:每一个人(包括非计算机专业),掌握简单的计算机技术都很容易(包括原先Maj

前人的代码(数学思想很重要)

/*N^N = 10^(N*log(N))中,由于 N <1000000000,N*log(N)取值在[0,9000000000],没有超出double数据的范围,没有益处.设N*log(N)的整数部分为intpart,分数部分为fractpart,则N^N = 10^(intpart + fractpart) = 10^intpart * 10^fractpart.其中10^intpart肯定为10的倍数,不影响结果,可忽略.所以:10^fractpart的最高位即为结果(因为0<=frac

计算机思维,数学思维,本质的区别

先阅读 (数学的本质是什么) 因为使用了其中一些结论. 计算机思维和数学思考,都包括了抽象和逻辑. 数学的抽象,在于剥离具体.数学研究从公理出发,可以变成纯思维的活动,和具体的的现实脱离关系.数学上的人为"定义",就是为了尽可能给出范围明确,不冗余的信息抽象.以后在利用这些信息,得出范围明确不冗余的抽象信息(证明的过程),如此反复.可见这里,数学需要的是一个自洽信息结构和关系.这些信息是架空具体和现实的.虽然,数学在极力的寻找关系,但这个行为发生在圈定好的有限范围内,由层层已知的定理和

简单的数学思想

l  筛法求素数 把从1开始的.某一范围内的正整数从小到大顺序排列, 1不是素数,首先把它筛掉.剩下的数中选择最小的数是素数,然后去掉它的倍数.依次类推,直到筛子为空时结束.如有: 1 2 3 4 5 6 7 89 10 11 12 13 14 1516 17 18 19 20 21 22 23 24 2526 27 28 29 30 1不是素数,去掉.剩下的数中2最小,是素数,去掉2的倍数,余下的数是: 3 5 7 9 11 13 1517 19 21 23 25 27 29 剩下的数中3最小

浙江大学-计算机中的数学(诙谐幽默的短视频)

视频优酷网址:http://list.youku.com/albumlist/show?id=19465801&ascending=1&page=1 1.计算机中的数学[01]_<数学分析(一):导数> 2.计算机中的数学[02]_<数学分析(二):参变量函数> 3.计算机中的数学[03]_<数学分析(三):泰勒展开> 4.计算机中的数学[04]_<数学分析(四):幂级数> 5.计算机中的数学[05]_<数学分析(五):隐函数>

单片机小白学步系列(十六) 单片机/计算机系统概述:模块化思想

截至目前,单片机入门篇的介绍就告一段落了.从本文开始将进入思想篇的学习. 思想篇对后面的具体知识学习进行整体的框架介绍,解释一些基础名词,以及对学习思想方法进行总结.思想篇的内容,对于后面的学习有很大的指导作用,尤其是模块化思想将会贯穿整个学习篇的知识体系.思想篇并不仅限于接下来的几篇文章,还会在学习篇中通过话题的形式穿插讲解. 阅读建议:如果还没有涉及到实践,阅读时不一定能对思想方法有深刻的认识,看的时候有个大致的认识就可以了.在具体实践的时候,可以根据需要再回来看一看. ==========

数学思想:为何我们把 x&#178;读作x平方

要弄清楚这个问题,我们得先认识一个人.古希腊大数学家 欧多克索斯,其在整个古代仅次于阿基米德,是一位天文学家.医生.几何学家.立法家和地理学家. 为何我们把 x2读作x平方呢? 古希腊时代,越来越多的无理数(不可公度比)的发现迫使希腊人不得不研究这些数.它们确实是数吗?它们出现于集合论证过程中,而整数和整数之比则既出现于几何也出现于一般的数量研究中.用于可公度的长度.面积和体积的几何证明,怎样才能推广用之于不可公度的这些量呢? 欧多克索斯引入了变量这个概念.量跟数不同,数是从一个跳到另一个,例如

数学思想

数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果.数学思想是对数学事实与理论经过概括后产生的本质认识:基本数学思想则是体现或应该体现于基础数学中的具有奠基性.总结性和最广泛的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,并且是历史地发展着的.通过数学思想的培养,数学的能力才会有一个大幅度的提高.掌握数学思想,就是掌握数学的精髓. 函数思想,是指用函数的概念和性质去分析问题.转化问题和解决问题.方程思想,是从问题的数量关系入手,运用数学语言将

HDU 4635 Strongly connected(强连通分量缩点+数学思想)

题意:给出一个图,如果这个图一开始就不是强连通图,求出最多加多少条边使这个图还能保持非强连通图的性质. 思路:不难想到缩点转化为完全图,然后找把它变成非强连通图需要去掉多少条边,但是应该怎么处理呢……有人给出这样的答案,找到分量中点数最少的块,把它的所有入边都去掉……好像是对的,但是万一这个块本来就有一个入度怎么办?这个边是不可以删的啊.所以我觉得这种办法是有点的问题的,所以最靠谱的方法还是斌哥他们给出的方法,最后的时候把点分成两个集合x和y,x和y本身都是完全图块,然后让x中的每一个点都指向y