题目描述
让我们来考虑1到N的正整数集合。让我们把集合中的元素按照字典序排列,例如当N=11时,其顺序应该为:1,10,11,2,3,4,5,6,7,8,9。
定义K在N个数中的位置为Q(N,K),例如Q(11,2)=4。现在给出整数K和M,要求找到最小的N,使得Q(N,K)=M。
输入输出格式
输入格式:
输入文件只有一行,是两个整数K和M。
输出格式:
输出文件只有一行,是最小的N,如果不存在这样的N就输出0。
输入输出样例
输入样例#1:
复制
2 4
输出样例#1: 复制
11
输入样例#2: 复制
100000001 1000000000
输出样例#2: 复制
100000000888888879
说明
【数据约定】
40%的数据,1<=K,M<=10^5;
100%的数据,1<=K,M<=10^9。
很像数位dp是吧;
不得不说还是我太菜了;
其实直接暴力算即可;
以233为例,
我们可以先计算出它最小应该在什么位置,然后与M进行比较,
如果M还有剩余,那么扩展位数慢慢加上,由于是*10的递增,复杂度是log的;
可以跑的很快;
#include<iostream> #include<cstdio> #include<algorithm> #include<cstdlib> #include<cstring> #include<string> #include<cmath> #include<map> #include<set> #include<vector> #include<queue> #include<bitset> #include<ctime> #include<deque> #include<stack> #include<functional> #include<sstream> //#include<cctype> //#pragma GCC optimize(2) using namespace std; #define maxn 1000005 #define inf 0x7fffffff //#define INF 1e18 #define rdint(x) scanf("%d",&x) #define rdllt(x) scanf("%lld",&x) #define rdult(x) scanf("%lu",&x) #define rdlf(x) scanf("%lf",&x) #define rdstr(x) scanf("%s",x) typedef long long ll; typedef unsigned long long ull; typedef unsigned int U; #define ms(x) memset((x),0,sizeof(x)) const long long int mod = 1e9 + 7; #define Mod 1000000000 #define sq(x) (x)*(x) #define eps 1e-4 typedef pair<int, int> pii; #define pi acos(-1.0) //const int N = 1005; #define REP(i,n) for(int i=0;i<(n);i++) typedef pair<int, int> pii; inline ll rd() { ll x = 0; char c = getchar(); bool f = false; while (!isdigit(c)) { if (c == ‘-‘) f = true; c = getchar(); } while (isdigit(c)) { x = (x << 1) + (x << 3) + (c ^ 48); c = getchar(); } return f ? -x : x; } ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a%b); } int sqr(int x) { return x * x; } /*ll ans; ll exgcd(ll a, ll b, ll &x, ll &y) { if (!b) { x = 1; y = 0; return a; } ans = exgcd(b, a%b, x, y); ll t = x; x = y; y = t - a / b * y; return ans; } */ int T; int K, M; ll maxx[21]; int dig[2100]; int a[2000]; ll qpow(int x) { ll ans = 1; for (int i = 1; i <= x; i++)ans *= 10; return ans; } int main() { //ios::sync_with_stdio(0); cin >> T; maxx[0] = 1; for (int i = 1; i <= 20; i++)maxx[i] = maxx[i - 1] * 10; while (T--) { rdint(K); rdint(M); bool fg = 0; for (int i = 0; i < 19; i++) { if (K == maxx[i] && M != i + 1) { cout << 0 << endl; fg = 1; break; } } if (fg)continue; ll tp = K; int tot = 0; ms(dig); while (tp) { int y = tp % 10; dig[++tot] = y; tp /= 10; } for (int i = 1; i <= tot; i++) { a[i] = dig[tot - i + 1]; } tp = 1; ll reg = 0; ll tmp = 0; for (int i = 1; i <= tot; i++) { reg = reg * 10ll + a[i]; tmp += (reg - qpow(i - 1) + 1); } if (tmp > M) { cout << 0 << endl; continue; } if (tmp == M) { cout << K << endl; continue; } tp = 1; M -= tmp; ll number = 1ll * reg * 10 - qpow(tot + tp - 1); while (number < M) { M -= number; number *= 10; tp++; } cout << qpow(tp + tot - 1) + M - 1 << endl; } return 0; }
原文地址:https://www.cnblogs.com/zxyqzy/p/10293033.html
时间: 2024-10-26 00:02:30