Java线程池详解(二)

一、前言

在总结了线程池的一些原理及实现细节之后,产出了一篇文章:Java线程池详解(一),后面的(一)是在本文出现之后加上的,而本文就成了(二)。因为在写完第一篇关于java线程池的文章之后,越发觉得还有太多内容需要补充,每次都是修修补补,总觉得还缺点什么。在第一篇中,我着重描述了java线程池的原理以及它的实现,主要的点在于它是如何工作的。而本文的内容将更为上层,重点在于如何应用java线程池,算是对第一篇文章的一点补充,这样对于java线程池的学习和总结稍微完整一些。

使用过java线程池的人应该知道,我们都习惯使用Executors这个工厂类来获取我们需要的线程池,而这个工厂不仅仅可以产生一种线程池,而是可以产生若干种不同应用场景的线程池,你应当在合适的场景中使用合适的线程池,以保证最好的效率。下文将主要剖析这个类的一些细节,为了保证本文的相对独立性,可能会提及一些在第一篇文章中提过的内容,这样阅读起来相对流畅一些,体验更佳。本文依然不会基于java线程池做更多应用方面的描述,而是从线程池类型这个角度出发,试图探索不同种类的线程池的特点和使用场景,从某种意义上来说,这样描述的意义较于实际的例子来说更为有用。

“授人以鱼不如授人以渔” !!!!

二、Executors工厂类详解

介于本文的重点在于Executors这个工厂类,下面首先列出了Executors这个类提供的一些方法。

Executors方法

本文需要对以上12个类做一些区分,从其特点出发,然后分析其应用场景。

  • public static ExecutorService newFixedThreadPool(int nThreads)

使用这个方法会产生这样一个线程池:线程池最多会保持nThreads个线程处于活动状态,如果当前所有任务都处于活动状态,那么新提交的任务会被添加到任务阻塞队列中去。总结一下就是:使用固定大小的线程池,并发数是固定的。


     * Creates a thread pool that reuses a fixed number of threads
     * operating off a shared unbounded queue.  At any point, at most
     * {@code nThreads} threads will be active processing tasks.
     * If additional tasks are submitted when all threads are active,
     * they will wait in the queue until a thread is available.
     * If any thread terminates due to a failure during execution
     * prior to shutdown, a new one will take its place if needed to
     * execute subsequent tasks.  The threads in the pool will exist
     * until it is explicitly {@link ExecutorService#shutdown shutdown}.

  • public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory)

相比于newFixedThreadPool(int nThreads), 你可以使用这个方法来传递你自己的线程工厂,线程工厂是用来干嘛的?就是用来生成线程的,你可以使用线程工厂做一些个性化的线程特性定制。

  • public static ExecutorService newWorkStealingPool(int parallelism)

在了解或者使用这个方法之前,你你该对java的Fork/Join并行框架有一些了解,如果你想要快速了解一下该部分的内容,可以参考这篇文章:Java Fork/Join并行框架

从名字上我们就知道这个方法生产出来的线程池具有某种“小偷”的行为,在Fork/Join里面,线程的工作模式为“盗窃算法”,也就是在自己的任务队列消费完了之后不是进入等到状态,而是会主动去偷窃别的线程的任务来做,其实是没有一种奖励机制来鼓励这些线程去帮助别的线程去消费任务的,所以可以认为这些线程都是好人,都为了快速完成任务协调作战。这种工作方式的重点在于,每个线程都将有一个任务队列,线程之间通过“偷窃”的方式互相帮助来完成任务的消费。

可以看下这个方法的实现:


return new ForkJoinPool(parallelism, ForkJoinPool.defaultForkJoinWorkerThreadFactory, null, true);

可以发现,这个方法不是使用我们在第一篇文章中分析了ThreadPoolExecutor来生成线程池。而是使用了ForkJoinPool,也就是Fork/Join里面的线程池,关于ForkJoinPool更为深入的分析不再本文的涉及范围内,你只要知道Fork/Join框架的一般运行原理就可以了,下面的描述可以帮助你决策你是否需要该方法提供的线程池来工作:


     * Creates a thread pool that maintains enough threads to support
     * the given parallelism level, and may use multiple queues to
     * reduce contention. The parallelism level corresponds to the
     * maximum number of threads actively engaged in, or available to
     * engage in, task processing. The actual number of threads may
     * grow and shrink dynamically. A work-stealing pool makes no
     * guarantees about the order in which submitted tasks are
     * executed.

  • public static ExecutorService newWorkStealingPool()

参考newWorkStealingPool(int parallelism)。

  • public static ExecutorService newSingleThreadExecutor()

下面是对该方法的描述:


     * Creates an Executor that uses a single worker thread operating
     * off an unbounded queue. (Note however that if this single
     * thread terminates due to a failure during execution prior to
     * shutdown, a new one will take its place if needed to execute
     * subsequent tasks.)  Tasks are guaranteed to execute
     * sequentially, and no more than one task will be active at any
     * given time. Unlike the otherwise equivalent
     * {@code newFixedThreadPool(1)} the returned executor is
     * guaranteed not to be reconfigurable to use additional threads.

可以从方法的名字上知道,该方法产生的线程池仅仅有一个Worker,任何时刻都将只有一个Worker在工作,添加的任务有很大概率被放在阻塞任务队列中等待执行。这些任务会被顺序执行,这个方法的返回值其实是对ThreadPoolExecutor的一层包装,下面的代码展示了最终执行任务的类:


    static class DelegatedExecutorService extends AbstractExecutorService {
        private final ExecutorService e;
        DelegatedExecutorService(ExecutorService executor) { e = executor; }
        public void execute(Runnable command) { e.execute(command); }
        public void shutdown() { e.shutdown(); }
        public List<Runnable> shutdownNow() { return e.shutdownNow(); }
        public boolean isShutdown() { return e.isShutdown(); }
        public boolean isTerminated() { return e.isTerminated(); }
        public boolean awaitTermination(long timeout, TimeUnit unit)
            throws InterruptedException {
            return e.awaitTermination(timeout, unit);
        }
        public Future<?> submit(Runnable task) {
            return e.submit(task);
        }
        public <T> Future<T> submit(Callable<T> task) {
            return e.submit(task);
        }
        public <T> Future<T> submit(Runnable task, T result) {
            return e.submit(task, result);
        }
        public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks)
            throws InterruptedException {
            return e.invokeAll(tasks);
        }
        public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks,
                                             long timeout, TimeUnit unit)
            throws InterruptedException {
            return e.invokeAll(tasks, timeout, unit);
        }
        public <T> T invokeAny(Collection<? extends Callable<T>> tasks)
            throws InterruptedException, ExecutionException {
            return e.invokeAny(tasks);
        }
        public <T> T invokeAny(Collection<? extends Callable<T>> tasks,
                               long timeout, TimeUnit unit)
            throws InterruptedException, ExecutionException, TimeoutException {
            return e.invokeAny(tasks, timeout, unit);
        }
    }

从上面的代码可以看出,这个类其实就是使用了构造时传递的参数e来完成,更像是代理。而e是什么?看下面的代码:



ThreadPoolExecutor(1, 1, 0L, TimeUnit.MILLISECONDS, new LinkedBlockingQueue<Runnable>())

其实就是一个只有一个线程的ThreadPoolExecutor。

  • public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory)

参考newSingleThreadExecutor(),多了一个线程工厂参数。

  • public static ExecutorService newCachedThreadPool()

首先看它的方法体内容:


 return new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60L, TimeUnit.SECONDS, new SynchronousQueue<Runnable>());

可以看到,核心线程数量为0,而上限为Integer.MAX_VALUE,而且keepAliveTime为60秒,那么这个线程池的工作模式为:只要有任务呗提交,而且当前没有空闲的线程可用,那么就会创建一个新的Worker来工作,一个线程工作完了之后会缓存(idle)60秒,如果60秒之内有新的任务提交,则会被唤醒进入工作模式,否则60秒后就会被回收。可以参考下面的描述:


     * Creates a thread pool that creates new threads as needed, but
     * will reuse previously constructed threads when they are
     * available.  These pools will typically improve the performance
     * of programs that execute many short-lived asynchronous tasks.
     * Calls to {@code execute} will reuse previously constructed
     * threads if available. If no existing thread is available, a new
     * thread will be created and added to the pool. Threads that have
     * not been used for sixty seconds are terminated and removed from
     * the cache. Thus, a pool that remains idle for long enough will
     * not consume any resources. Note that pools with similar
     * properties but different details (for example, timeout parameters)
     * may be created using {@link ThreadPoolExecutor} constructors.

从描述上,我们可以想到,其实这种类型的线程池比较适合于短期高流量的场景,也就是我们所说的“秒杀”场景,在那样的场景下,需要的线程数量较多,那么使用该类型的线程池可以满足,而且该线程池还有自动收缩的功能,在不需要那么多线程的时候,会自动回收线程,释放资源。

  • public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory)

参考newCachedThreadPool()。

  • public static ScheduledExecutorService newSingleThreadScheduledExecutor()

只有一个线程的调度线程池,类似于newSingleThreadExecutor,但是该方法生产的线程池具备调度功能,下面是对该方法的描述:


     * Creates a single-threaded executor that can schedule commands
     * to run after a given delay, or to execute periodically.
     * (Note however that if this single
     * thread terminates due to a failure during execution prior to
     * shutdown, a new one will take its place if needed to execute
     * subsequent tasks.)  Tasks are guaranteed to execute
     * sequentially, and no more than one task will be active at any
     * given time. Unlike the otherwise equivalent
     * {@code newScheduledThreadPool(1)} the returned executor is
     * guaranteed not to be reconfigurable to use additional threads.

  • public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory threadFactory)

参考newSingleThreadExecutor和newSingleThreadScheduledExecutor。

  • public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize)

参考newFixedThreadPool,但是返回类型不一样。

  • public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize, ThreadFactory threadFactory)

参考newFixedThreadPool。

通过上面的分析,我们应该对java线程池的理解更为深入,再次说明,本文仅仅是对第一篇java线程池文章内容的补充,你应该首先阅读第一篇文章:Java线程池详解(一)之后再来阅读本文,那样内容上更完整,但是单独阅读本文一样具备独立性,但是收获肯定没有同时阅读两篇文章那样多。

当然,还有许多需要补充的内容,比如Fork/Join框架的线程池的实现原理以及其细节,以及线程池使用的阻塞队列的特点以及实现细节,这些内容要更为底层,需要的知识与要求的能力要多更高,会在以后的文章中陆续来探索。

转载: https://www.jianshu.com/p/22c225a5ee59

原文地址:https://www.cnblogs.com/zhi-xing/p/10402494.html

时间: 2024-10-14 01:07:17

Java线程池详解(二)的相关文章

【java线程系列】java线程系列之java线程池详解

一线程池的概念及为何需要线程池: 我们知道当我们自己创建一个线程时如果该线程执行完任务后就进入死亡状态,这样如果我们需要在次使用一个线程时得重新创建一个线程,但是线程的创建是要付出一定的代价的,如果在我们的程序中需要频繁使用线程,且每个线程执行的时间很短,短到几乎小于线程创建及销毁的时间那么代价将会更大,如:服务器应用程序中经常出现的情况是:单个任务处理的时间很短而请求的数目却是巨大的.显然如果频繁的创建销毁线程效率将非常低. 那么我们能否让一个线程可以复用,即当一个线程执行完后不销毁该线程,而

Java线程池 详解(图解)

来源:www.jianshu.com/p/098819be088c 前言   Java中的线程池十分重要,无论是在实际应用中还是应对面试 一.线程池原理 1.1 使用线程池的好处 第一:降低资源消耗.通过重复利用已创建的线程降低线程创建和销毁造成的消耗. 第二:提高响应速度.当任务到达时,任务可以不需要等到线程创建就能立即执行. 第三:提高线程的可管理性.线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一分配.调优和监控. 1.2 线程池的实现原理

关于Java线程池详解(二)

一.为什么要用线程池? 1.减少资源的开销 : 2.减少了每次创建线程.销毁线程的开销: 3.提高响应速度 ,每次请求到来时,由于线程的创建已经完成,故可以直接执行任务,因此提高了响应速度. 提高线程的可管理性 ,线程是一种稀缺资源,若不加以限制,不仅会占用大量资源,而且会影响系统的稳定性. 因此,线程池可以对线程的创建与停止.线程数量等等因素加以控制,使得线程在一种可控的范围内运行,不仅能保证系统稳定运行,而且方便性能调优. 二.Executor框架中的所有类可以分成三类: 1.任务: 任务有

java线程池详解一

1.为什么要用线程池技术 诸如Web服务器.数据库服务器.文件服务器或邮件服务器之类的许多服务器应用程序都面向处理来自某些远程来源的大量短小的任务.请求以某种方式到达服务器,这种方式可能是通过网络协议(例如 HTTP.FTP 或 POP).通过 JMS 队列或者可能通过轮询数据库.不管请求如何到达,服务器应用程序中经常出现的情况是:单个任务处理的时间很短而请求的数目却是巨大的. 构建服务器应用程序的一个过于简单的模型应该是:每当一个请求到达就创建一个新线程,然后在新线程中为请求服务.实际上,对于

Java线程池详解及实例

前言 多线程的异步执行方式,虽然能够最大限度发挥多核计算机的计算能力,但是如果不加控制,反而会对系统造成负担.线程本身也要占用内存空间,大量的线程会占用内存资源并且可能会导致Out of Memory.即便没有这样的情况,大量的线程回收也会给GC带来很大的压力. 为了避免重复的创建线程,线程池的出现可以让线程进行复用.通俗点讲,当有工作来,就会向线程池拿一个线程,当工作完成后,并不是直接关闭线程,而是将这个线程归还给线程池供其他任务使用. 接下来从总体到细致的方式,来共同探讨线程池. 总体的架构

Java线程池详解

一.线程池初探 所谓线程池,就是将多个线程放在一个池子里面(所谓池化技术),然后需要线程的时候不是创建一个线程,而是从线程池里面获取一个可用的线程,然后执行我们的任务.线程池的关键在于它为我们管理了多个线程,我们不需要关心如何创建线程,我们只需要关系我们的核心业务,然后需要线程来执行任务的时候从线程 http://pic.cnhubei.com/space.php?uid=1913&do=album&id=1109585http://pic.cnhubei.com/space.php?ui

Java 线程(多线程)详解

查看了许多书籍,网上的博客,现在我来说一下有关于我对线程的详解,有不对的欢迎指正. 一. 线程的生命周期: 程序有自己的一个生命周期,线程也不例外,也有自己的生命周期.查看许多书籍或者网上资料,发现了一件很有趣的事情,那就是它们对线程的生命周期不是唯一.有两种或者以上的线程生命周期. 第一种线程生命周期线程状态转换图:一共5个状态:新建,就绪,运行,阻塞和结束   图 1 第二种生命周期图:一共6个状态:New,Runnable,Blocked,Waiting,Timed Waiting,Ter

java - jdk线程池详解

线程池参数详解 public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize, long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory, RejectedExecutionHandler handler) 参数 说明 corePoolSize 表示常驻核心线程数量. maximumPoolS

Java自定义线程池详解

自定义线程池的核心:ThreadPoolExecutor 为了更好的控制多线程,JDK提供了一套线程框架Executor,帮助开发人员有效的进行线程控制,其中在java.util.concurrent包下,是JDK并发包的核心,比如我们熟知的Executors.Executors扮演着线程工厂的角色,我们通过它可以创建特定功能的线程池,而这些线程池背后的就是:ThreadPoolExecutor.那么下面我们来具体分析下它. 构造ThreadPoolExecutor public ThreadP