Joint Detection and Identification Feature Learning for Person Search

Joint Detection and Identification Feature Learning for Person Search

2018-06-02

本文的贡献主要体现在:

  提出一种联合的 检测 (person detection)行人匹配(person matching) 的网络结构;

  提出一种 Online Instance Matching loss function 以更有效的进行特征的学习;

  提出一个大型的 person search 的 benchmark

原文地址:https://www.cnblogs.com/wangxiaocvpr/p/9126968.html

时间: 2024-10-30 06:30:51

Joint Detection and Identification Feature Learning for Person Search的相关文章

转:无监督特征学习——Unsupervised feature learning and deep learning

http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning by A

paper 124:【转载】无监督特征学习——Unsupervised feature learning and deep learning

来源:http://blog.csdn.net/abcjennifer/article/details/7804962 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accuracy大多明显优于其他方法进行training.本文将主要针对Andrew的unsupervised learning,结合他的视频:unsupervised feature learning b

【转载】 无监督特征学习——Unsupervised feature learning and deep learning

无监督特征学习——Unsupervised feature learning and deep learning 分类: Compression Computer Vision Machine Learning 杂感2012-07-31 15:48 36848人阅读 评论(61) 收藏 举报 目录(?)[+] 无监督学习近年来很热,先后应用于computer vision, audio classification和 NLP等问题,通过机器进行无监督学习feature得到的结果,其accurac

图像分类之特征学习ECCV-2010 Tutorial: Feature Learning for Image Classification

ECCV-2010 Tutorial: Feature Learning for Image Classification Organizers Kai Yu (NEC Laboratories America, [email protected]), Andrew Ng (Stanford University, [email protected]) Place & Time: Creta Maris Hotel, Crete, Greece, 9:00 – 13:00, September

【转帖】UFLDL Tutorial(the main ideas of Unsupervised Feature Learning and Deep Learning)

UFLDL Tutorial From Ufldl Jump to: navigation, search Description: This tutorial will teach you the main ideas of Unsupervised Feature Learning and Deep Learning.  By working through it, you will also get to implement several feature learning/deep le

论文笔记之:Pedestrian Detection aided by Deep Learning Semantic Tasks

Pedestrian Detection aided by Deep Learning Semantic Tasks CVPR 2015 本文考虑将语义任务(即:行人属性和场景属性)和行人检测相结合,以语义信息协助进行行人检测.先来看一下大致的检测结果(TA-CNN为本文检测结果): 可以看出,由于有了属性信息的协助,其行人检测的精确度有了较大的提升.具体网络架构如下图所示:

Center Loss - A Discriminative Feature Learning Approach for Deep Face Recognition

URL:http://ydwen.github.io/papers/WenECCV16.pdf这篇论文主要的贡献就是提出了Center Loss的损失函数,利用Softmax Loss和Center Loss联合来监督训练,在扩大类间差异的同时缩写类内差异,提升模型的鲁棒性. 为了直观的说明softmax loss的影响,作者在对LeNet做了简单修改,把最后一个隐藏层输出维度改为2,然后将特征在二维平面可视化,下面两张图分别是MNIDST的train集和test集,可以发现类间差异比较明显,但

A Discriminative Feature Learning Approach for Deep Face Recognition

url: https://kpzhang93.github.io/papers/eccv2016.pdf year: ECCV2016 abstract 对于人脸识别任务来说, 网络学习到的特征具有判别性是一件很重要的事情. 增加类间距离, 减小类内距离在人脸识别任务中很重要. 那么, 该如何增加类间距离, 减小类内距离呢? 通常, 我们使用 softmax loss 作为分类任务的loss, 但是, 单单依赖使用 softmax 监督学习到的特征只能将不同类别分开, 却无法约束不同类别之间的距

[Papers]《Adaptive Deconvolutional Networks for Mid and High Level Feature Learning》阅读笔记