numpy元素级数组函数

一元函数

  • abs, fabs 计算整数、浮点数或复数的绝对值。对于非复数值,可以使用更快的fabs。
  • sqrt 计算各元素的平方根。相当于arr ** 0.5
  • sqare 计算各元素的平方。相当于arr ** 2
  • exp 计算各元素的e^x
  • log, log10, log2, log1p 分别为自然对数、底数为10的log、底数为2的log和log(1 + x)。
  • sign 计算各元素的正负号:1(正数)、0(零)、-1(负数)。
  • ceil 计算各元素的ceiling值,即大于等于该值的最小整数。
  • floor 计算各元素的floor值,即小于等于该值的最小整数。
  • rint 将各元素值四舍五入到最接近的整数,保留dtype。
  • modf 将数组的小数部分与整数部分以两个独立数组的形式返还。
  • isnan 返回一个表示“哪些值是NaN(这不是一个数字)”的布尔型数组
  • isfinite, isinf 分别返回一个表示“哪些元素是有限的(非inf,非NaN)”或“哪些元素是
  • 无穷的”的布尔型数组
  • cos, cosh, sin, sinh, tan, tanh 普通型或双曲型三角函数
  • arccos, arccosh, arcsin, arcsinh,
  • arctan, arctanh
  • 反三角函数
  • logical_not 计算各元素not x的真值。相当于-arr。

二元函数

  • add 将数组中对应的元素相加
  • subtract 从第一个数组中减去第二个数组中的元素
  • multiply 数组元素相乘
  • divide, floor_divide 除法或向下取整除法
  • power 对第一个数组中的元素A和第二个数组中对应位置的元素B,计算A^B。
  • maximum, fmax 元素级的最大值计算。fmax将忽略NaN。
  • minimum, fmin 元素级的最小值计算。fmin将忽略NaN。
  • mod 元素级的求模计算
  • copysign 将第二个数组中的符号复制给第一个数组中的值
  • greater, greater_equal, less,
  • less_equal,equal, not_equal
  • 执行元素级的比较,最终产生布尔型数组。
  • logical_and, logical_or,
  • logical_xor
  • 执行元素级的真值逻辑运算,最终产生布尔型数组

原文地址:https://www.cnblogs.com/echoboy/p/9519862.html

时间: 2024-11-02 13:05:47

numpy元素级数组函数的相关文章

numpy中的快速的元素级数组函数

numpy中的快速的元素级数组函数 一元(unary)ufunc 对于数组中的每一个元素,都将元素代入函数,将得到的结果放回到原来的位置 >>> import numpy as np >>> arr=np.arange(10) >>> arr array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) >>> np.sqrt(arr)# 开方 array([0. , 1. , 1.41421356, 1.7320508

【学习】通用函数:快速的元素级数组函数【Numpy】

通用函数(即ufunc)是一种对ndarray中的数据执行元素级运算的函数.可以将其看做简单函数(接受一个或多个标量值,并产生一个或多个标量值)的矢量化包装器. sqrt 和 exp为一元(unary)ufunc,add或maxinum接受2个数组,因此也叫二元(binary) ufunc, 并返回一个结果数组 import numpy as np arr = np.arange(10) np.sqrt(arr) Out[110]: array([ 0. , 1. , 1.41421356, 1

通用函数:快速的元素级数组函数

通用函数(及ufunc)是一种对ndarray中的数据执行元素级运算的函数.你可以将其看作简单函数(接受一个或多个标量值,并产生一个或多个标量值)的矢量化包装器. https://zhuanlan.zhihu.com/p/33468084 abs,fabs sqrt square exp log,log10,log2,log1p sign ceil floor rint modf isnan isfinite,isinf cos,cosh,sin,sinh tan,tanh arccos,arc

NumPy基础:数组和矢量计算

今天被老板fire了,还是继续抄书吧,安抚我受伤的小心脏.知识还是得慢慢积累,一步一个脚印,这样或许才是最快的捷径. ------2015-2-16------------------------------------------------------------------ NumPy的ndarray:一种多维数组对象 NumPy一个重要的特点就是N维数组对象(ndarray),该对象是一个快速灵活的大数据集容器.ndarray是一个通用的同构数据多维容器,也就是所有的元素都必须是相同的类

《利用Python进行数据分析·第2版》第四章 Numpy基础:数组和矢量计算

<利用Python进行数据分析·第2版>第四章 Numpy基础:数组和矢量计算 numpy高效处理大数组的数据原因: numpy是在一个连续的内存块中存储数据,独立于其他python内置对象.其C语言编写的算法库可以操作内存而不必进行其他工作.比起内置序列,使用的内存更少(即时间更快,空间更少) numpy可以在整个数组上执行复杂的计算,而不需要借助python的for循环 4.0 前提知识 数据:结构化的数据代指所有的通用数据,如表格型,多维数组,关键列,时间序列等 相关包:numpy pa

js 的数组怎么push一个对象. Js数组的操作push,pop,shift,unshift JavaScript使用push方法添加一个元素到数组末 JavaScript数组函数unshift、shift、pop、push使用

push()函数用于向当前数组的添加一个或多个元素,并返回新的数组长度.新的元素将会依次添加到数组的末尾. 该函数属于Array对象,所有主流浏览器均支持该函数. 语法 array.push( item1 [,items... ] )参数 参数 描述item1 任意类型添加到当前数组末尾处的元素.items 可选参数/任意类型要添加到当前数组末尾处的其他项,可以有多个.注意:如果添加的元素类型为数组类型(Array),仍然会被当作一个元素看待,只是这个元素是数组类型而已.如果要合并两个数组,请使

四、Numpy基础:数组运算

h2 { font-size: 24px; height: 35px; line-height: 35px !important; width: 95%; background-color: #169FE6; padding-left: 10px; color: white } table { border: 1px solid #d3d3d3; background: #fefefe; width: 90% } th,td { padding: 0.5% 1% 0.5% } th { back

《利用python进行数据分析》读书笔记--第四章 numpy基础:数组和矢量计算

第四章 Numpy基础:数组和矢量计算 实话说,用numpy的主要目的在于应用矢量化运算.Numpy并没有多么高级的数据分析功能,理解Numpy和面向数组的计算能有助于理解后面的pandas.按照课本的说法,作者关心的功能主要集中于: 用于数据整理和清理.子集构造和过滤.转换等快速的矢量化运算 常用的数组解法,如排序.唯一化.集合运算等 高效的描述统计和数据聚合/摘要运算 用于异构数据集的合并/连接运算的数据对齐和关系型数据运算 将条件逻辑表述为数组表达式(而不是带有if-elif-else分支

numpy教程:数组操作

http://blog.csdn.net/pipisorry/article/details/39496831 Array manipulation routines numpy数组基本操作,包括copy, shape, 转换(类型转换), type, 重塑等等.这些操作应该都可以使用numpy.fun(array)或者array.fun()来调用. Basic operations copyto(dst, src[, casting, where])Copies values from one