第三十四节,目标检测之谷歌Object Detection API源码解析

我们在第三十二节,使用谷歌Object Detection API进行目标检测、训练新的模型(使用VOC 2012数据集)那一节我们介绍了如何使用谷歌Object Detection API进行目标检测,以及如何使用谷歌提供的目标检测模型训练自己的数据。在训练自己的数据集时,主要包括以下几步:

  • 制作自己的数据集,注意这里数据集在进行标注时,需要按照一定的格式。然后调object_detection\dataset_tools下对应的脚本生成tfrecord文件。如下图,如果我们想调用create_pascal_tf_record.py文件生成tfrecord文件,那么我们的数据集要和voc 2012数据集的标注方式一样。你也可以通过解读create_pascal_tf_record.py文件了解我们的数据集的标注方式。

  • 下载我们所要使用的目标检测模型,进行预训练,不然从头开始训练时间成本会很高。
  • 在object_detection/samples/configs文件夹下有一些配置文件,选择与我们所要使用的目标检测模型相对应的配置文件,并进行一些修改。
  • 使用object_detection/train.py文件进行训练。
  • 使用export_inference_graph.py脚本导出训练好的模型,并进行目标检测。

在这里我主要解析一下train.py文件的工作流程。

一 train.py文件解析

先附上源码:

# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================

r"""Training executable for detection models.

This executable is used to train DetectionModels. There are two ways of
configuring the training job:

1) A single pipeline_pb2.TrainEvalPipelineConfig configuration file
can be specified by --pipeline_config_path.

Example usage:
    ./train         --logtostderr         --train_dir=path/to/train_dir         --pipeline_config_path=pipeline_config.pbtxt

2) Three configuration files can be provided: a model_pb2.DetectionModel
configuration file to define what type of DetectionModel is being trained, an
input_reader_pb2.InputReader file to specify what training data will be used and
a train_pb2.TrainConfig file to configure training parameters.

Example usage:
    ./train         --logtostderr         --train_dir=path/to/train_dir         --model_config_path=model_config.pbtxt         --train_config_path=train_config.pbtxt         --input_config_path=train_input_config.pbtxt
"""

import functools
import json
import os
import tensorflow as tf

from object_detection import trainer
from object_detection.builders import dataset_builder
from object_detection.builders import graph_rewriter_builder
from object_detection.builders import model_builder
from object_detection.utils import config_util
from object_detection.utils import dataset_util

tf.logging.set_verbosity(tf.logging.INFO)

flags = tf.app.flags
flags.DEFINE_string(‘master‘, ‘‘, ‘Name of the TensorFlow master to use.‘)
flags.DEFINE_integer(‘task‘, 0, ‘task id‘)
flags.DEFINE_integer(‘num_clones‘, 1, ‘Number of clones to deploy per worker.‘)
flags.DEFINE_boolean(‘clone_on_cpu‘, False,
                     ‘Force clones to be deployed on CPU.  Note that even if ‘
                     ‘set to False (allowing ops to run on gpu), some ops may ‘
                     ‘still be run on the CPU if they have no GPU kernel.‘)
flags.DEFINE_integer(‘worker_replicas‘, 1, ‘Number of worker+trainer ‘
                     ‘replicas.‘)
flags.DEFINE_integer(‘ps_tasks‘, 0,
                     ‘Number of parameter server tasks. If None, does not use ‘
                     ‘a parameter server.‘)
flags.DEFINE_string(‘train_dir‘, ‘‘,
                    ‘Directory to save the checkpoints and training summaries.‘)

flags.DEFINE_string(‘pipeline_config_path‘, ‘‘,
                    ‘Path to a pipeline_pb2.TrainEvalPipelineConfig config ‘
                    ‘file. If provided, other configs are ignored‘)

flags.DEFINE_string(‘train_config_path‘, ‘‘,
                    ‘Path to a train_pb2.TrainConfig config file.‘)
flags.DEFINE_string(‘input_config_path‘, ‘‘,
                    ‘Path to an input_reader_pb2.InputReader config file.‘)
flags.DEFINE_string(‘model_config_path‘, ‘‘,
                    ‘Path to a model_pb2.DetectionModel config file.‘)

FLAGS = flags.FLAGS

def main(_):
  assert FLAGS.train_dir, ‘`train_dir` is missing.‘
  if FLAGS.task == 0: tf.gfile.MakeDirs(FLAGS.train_dir)
  if FLAGS.pipeline_config_path:
    configs = config_util.get_configs_from_pipeline_file(
        FLAGS.pipeline_config_path)
    if FLAGS.task == 0:
      tf.gfile.Copy(FLAGS.pipeline_config_path,
                    os.path.join(FLAGS.train_dir, ‘pipeline.config‘),
                    overwrite=True)
  else:
    configs = config_util.get_configs_from_multiple_files(
        model_config_path=FLAGS.model_config_path,
        train_config_path=FLAGS.train_config_path,
        train_input_config_path=FLAGS.input_config_path)
    if FLAGS.task == 0:
      for name, config in [(‘model.config‘, FLAGS.model_config_path),
                           (‘train.config‘, FLAGS.train_config_path),
                           (‘input.config‘, FLAGS.input_config_path)]:
        tf.gfile.Copy(config, os.path.join(FLAGS.train_dir, name),
                      overwrite=True)

  model_config = configs[‘model‘]
  train_config = configs[‘train_config‘]
  input_config = configs[‘train_input_config‘]

  model_fn = functools.partial(
      model_builder.build,
      model_config=model_config,
      is_training=True)

  def get_next(config):
    return dataset_util.make_initializable_iterator(
        dataset_builder.build(config)).get_next()

  create_input_dict_fn = functools.partial(get_next, input_config)

  env = json.loads(os.environ.get(‘TF_CONFIG‘, ‘{}‘))
  cluster_data = env.get(‘cluster‘, None)
  cluster = tf.train.ClusterSpec(cluster_data) if cluster_data else None
  task_data = env.get(‘task‘, None) or {‘type‘: ‘master‘, ‘index‘: 0}
  task_info = type(‘TaskSpec‘, (object,), task_data)

  # Parameters for a single worker.
  ps_tasks = 0
  worker_replicas = 1
  worker_job_name = ‘lonely_worker‘
  task = 0
  is_chief = True
  master = ‘‘

  if cluster_data and ‘worker‘ in cluster_data:
    # Number of total worker replicas include "worker"s and the "master".
    worker_replicas = len(cluster_data[‘worker‘]) + 1
  if cluster_data and ‘ps‘ in cluster_data:
    ps_tasks = len(cluster_data[‘ps‘])

  if worker_replicas > 1 and ps_tasks < 1:
    raise ValueError(‘At least 1 ps task is needed for distributed training.‘)

  if worker_replicas >= 1 and ps_tasks > 0:
    # Set up distributed training.
    server = tf.train.Server(tf.train.ClusterSpec(cluster), protocol=‘grpc‘,
                             job_name=task_info.type,
                             task_index=task_info.index)
    if task_info.type == ‘ps‘:
      server.join()
      return

    worker_job_name = ‘%s/task:%d‘ % (task_info.type, task_info.index)
    task = task_info.index
    is_chief = (task_info.type == ‘master‘)
    master = server.target

  graph_rewriter_fn = None
  if ‘graph_rewriter_config‘ in configs:
    graph_rewriter_fn = graph_rewriter_builder.build(
        configs[‘graph_rewriter_config‘], is_training=True)

  trainer.train(
      create_input_dict_fn,
      model_fn,
      train_config,
      master,
      task,
      FLAGS.num_clones,
      worker_replicas,
      FLAGS.clone_on_cpu,
      ps_tasks,
      worker_job_name,
      is_chief,
      FLAGS.train_dir,
      graph_hook_fn=graph_rewriter_fn)

if __name__ == ‘__main__‘:
  tf.app.run()

1、先定义了tf.app.flags,用于支持接受命令行传递参数,相当于接受argv。

flags = tf.app.flags
flags.DEFINE_string(‘master‘, ‘‘, ‘Name of the TensorFlow master to use.‘)
flags.DEFINE_integer(‘task‘, 0, ‘task id‘)
flags.DEFINE_integer(‘num_clones‘, 1, ‘Number of clones to deploy per worker.‘)
flags.DEFINE_boolean(‘clone_on_cpu‘, False,
                     ‘Force clones to be deployed on CPU.  Note that even if ‘
                     ‘set to False (allowing ops to run on gpu), some ops may ‘
                     ‘still be run on the CPU if they have no GPU kernel.‘)
flags.DEFINE_integer(‘worker_replicas‘, 1, ‘Number of worker+trainer ‘
                     ‘replicas.‘)
flags.DEFINE_integer(‘ps_tasks‘, 0,
                     ‘Number of parameter server tasks. If None, does not use ‘
                     ‘a parameter server.‘)
flags.DEFINE_string(‘train_dir‘, ‘‘,
                    ‘Directory to save the checkpoints and training summaries.‘)

flags.DEFINE_string(‘pipeline_config_path‘, ‘‘,
                    ‘Path to a pipeline_pb2.TrainEvalPipelineConfig config ‘
                    ‘file. If provided, other configs are ignored‘)

flags.DEFINE_string(‘train_config_path‘, ‘‘,
                    ‘Path to a train_pb2.TrainConfig config file.‘)
flags.DEFINE_string(‘input_config_path‘, ‘‘,
                    ‘Path to an input_reader_pb2.InputReader config file.‘)
flags.DEFINE_string(‘model_config_path‘, ‘‘,
                    ‘Path to a model_pb2.DetectionModel config file.‘)

FLAGS = flags.FLAGS

这里面有几个比较重要的参数,train_dir目录用于保存训练的模型和日志文件,pipeline_config_path用于指定pipeline_pb2.TrainEvalPipelineConfig配置文件的全路径(如果不指定指定这个参数,需要指定train_config_path,input_config_path,model_config_path配置文件,其实这三个文件就是把pipeline_pb2.TrainEvalPipelineConfig配置文件分成了三部分)。

2、再来看一下main函数,我们把它分成几部分来解读。

假设我们在控制台下的命令如下:

python train.py --train_dir voc/train_dir/ --pipeline_config_path voc/faster_rcnn_inception_resnet_v2_atrous_voc.config
  assert FLAGS.train_dir, ‘`train_dir` is missing.‘
  if FLAGS.task == 0: tf.gfile.MakeDirs(FLAGS.train_dir)
  if FLAGS.pipeline_config_path:
    configs = config_util.get_configs_from_pipeline_file(
        FLAGS.pipeline_config_path)
    if FLAGS.task == 0:
      tf.gfile.Copy(FLAGS.pipeline_config_path,
                    os.path.join(FLAGS.train_dir, ‘pipeline.config‘),
                    overwrite=True)
  else:
    configs = config_util.get_configs_from_multiple_files(
        model_config_path=FLAGS.model_config_path,
        train_config_path=FLAGS.train_config_path,
        train_input_config_path=FLAGS.input_config_path)
    if FLAGS.task == 0:
      for name, config in [(‘model.config‘, FLAGS.model_config_path),
                           (‘train.config‘, FLAGS.train_config_path),
                           (‘input.config‘, FLAGS.input_config_path)]:
        tf.gfile.Copy(config, os.path.join(FLAGS.train_dir, name),
                      overwrite=True)

因为我们传入了train_dir,pipeline_config_path参数,程序执行时会:

  • 读取pipeline_config_path配置文件,返回一个dict,保存配置文件中`model`, `train_config`,  `train_input_config`, `eval_config`, `eval_input_config`信息。
  • 把pipeline_config_path配置文件复制到train_dir目录下,命名为pipeline.config
  model_config = configs[‘model‘]
  train_config = configs[‘train_config‘]
  input_config = configs[‘train_input_config‘]

  model_fn = functools.partial(
      model_builder.build,
      model_config=model_config,
      is_training=True)

  def get_next(config):
    return dataset_util.make_initializable_iterator(
        dataset_builder.build(config)).get_next()

  create_input_dict_fn = functools.partial(get_next, input_config)

原文地址:https://www.cnblogs.com/zyly/p/9267426.html

时间: 2024-10-06 23:39:47

第三十四节,目标检测之谷歌Object Detection API源码解析的相关文章

centos 监控cacti/nagios/zabbix 第三十四节课

centos   监控cacti/nagios/zabbix   第三十四节课 上半节课 下半节课 f

第三百三十四节,web爬虫讲解2—Scrapy框架爬虫—Scrapy爬取百度新闻,爬取Ajax动态生成的信息

第三百三十四节,web爬虫讲解2-Scrapy框架爬虫-Scrapy爬取百度新闻,爬取Ajax动态生成的信息 crapy爬取百度新闻,爬取Ajax动态生成的信息,抓取百度新闻首页的新闻标题和rul地址 有多网站,当你浏览器访问时看到的信息,在html源文件里却找不到,由得信息还是滚动条滚动到对应的位置后才显示信息,那么这种一般都是 js 的 Ajax 动态请求生成的信息 我们以百度新闻为列: 1.分析网站 首先我们浏览器打开百度新闻,在网页中间部分找一条新闻信息 然后查看源码,看看在源码里是否有

Android学习笔记(十四)——在运行时添加碎片(附源码)

在运行时添加碎片 点击获取源码 将UI分割为多个可配置的部分是碎片的优势之一,但其真正强大之处在于可在运行时动态地把它们添加到活动中. 1.使用上一篇创建的Fragments项目,在main.xml文件中注释掉两个<fragment>元素: 2.在FragmentActivity.java中添加下面的代码: FragmentManager fragmentManager = getSupportFragmentManager();//向活动添加碎片 FragmentTransaction fr

第三十一节,使用谷歌Object Detection API进行目标检测

Object Detection API是谷歌开放的一个内部使用的物体识别系统.2016年 10月,该系统在COCO识别挑战中名列第一.它支持当前最佳的实物检测模型,能够在单个图像中定位和识别多个对象.该系统不仅用于谷歌于自身的产品和服务,还被推广至整个研究社区. 一.代码位置与内置的模型 1.Object Detection Object Detection模块的位置与slim的位置相近,同在github.com 中TensorFlow 的models\research目录下.类似slim,

第三十四节(java-实现在线翻译)

NameValue .java文件里: package com.tanzhou.util; /** * 参数拼接工具类 * @author Ming * @version 1.0 * 2015-2-7 */ public class NameValue { // &client=t&hl=zh-CN&ie=UTF-8&multires=1&oe=UTF-8&otf=1&prev=conf&psl=zh-CN&ptl=zh-CN&

[ExtJS5学习笔记]第三十四节 sencha extjs 5 grid表格之java后台导出excel

继上次使用js前端导出excel之后,还有一个主要大家比较关注的是后台实现导出excel,因为本人开发使用的java所以这里使用apache的开源项目poi进行后台excel的导出. 本文目录 本文目录 poi项目下载及加载 extjs前端导出设置 extjs后台对应的解决方案 创建excel工作簿 创建一个excel页签 生成excel样式并初始化 产生表格标题行build headers 构造数据行build rows poi项目下载及加载 POI项目是apache官网的一个开源项目,其主要

第三十四节,pickle数据类型转换模块

在使用pickle模块时需要先 import pickle 引入模块 pickle.dumps()模块函数 功能:将python各种类型的数据转换成计算机识别的二进制字节码[有参] 使用方法:pickle.dumps("要转换的数据类型") 格式如:pickle.dumps(a) 注意:计算机只能字节码,不能识别python的各种数据类型如:列表,元祖,字典等,要想在计算机保存这些python数据类型,就需要将这些数据类型转换成二进制字节码来保存 #!/usr/bin/env pyth

sqler sql 转rest api 源码解析(四)macro 的执行

macro 说明 macro 是sqler 的核心,当前的处理流程为授权处理,数据校验,依赖执行(include),聚合处理,数据转换 处理 授权处理 这个是通过golang 的js 包处理的,通过将golang 的http 请求暴露为js 的fetch 方法,放在js 引擎的执行,通过 http 状态吗确认是否是执行的权限,对于授权的处理,由宏的配置指定,建议通过http hreader处理 参考格式:    authorizer = <<JS       (function(){    

第三十六节,目标检测之yolo源码解析

在一个月前,我就已经介绍了yolo目标检测的原理,后来也把tensorflow实现代码仔细看了一遍.但是由于这个暑假事情比较大,就一直搁浅了下来,趁今天有时间,就把源码解析一下.关于yolo目标检测的原理请参考前面一篇文章:第三十五节,目标检测之YOLO算法详解 在讲解源码之前,我们需要做一些准备工作: 下载源码,本文所使用的yolo源码来源于网址:https://github.com/hizhangp/yolo_tensorflow 下载训练所使用的数据集,我们仍然使用以VOC 2012数据集