Codeforces Round #392 (Div. 2) F. Geometrical Progression

原题地址:http://codeforces.com/contest/758/problem/F

F. Geometrical Progression

time limit per test

4 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

For given n, l and r find the number of distinct geometrical progression, each of which contains n distinct integers not less than l and not greater than r. In other words, for each progression the following must hold: l?≤?ai?≤?r and ai?≠?aj , where a1,?a2,?...,?an is the geometrical progression, 1?≤?i,?j?≤?n and i?≠?j.

Geometrical progression is a sequence of numbers a1,?a2,?...,?an where each term after first is found by multiplying the previous one by a fixed non-zero number d called the common ratio. Note that in our task d may be non-integer. For example in progression 4,?6,?9, common ratio is .

Two progressions a1,?a2,?...,?an and b1,?b2,?...,?bn are considered different, if there is such i (1?≤?i?≤?n) that ai?≠?bi.

Input

The first and the only line cotains three integers n, l and r (1?≤?n?≤?107,?1?≤?l?≤?r?≤?107).

Output

Print the integer K — is the answer to the problem.

Examples

Input

1 1 10

Output

10

Input

2 6 9

Output

12

Input

3 1 10

Output

8

Input

3 3 10

Output

2

Note

These are possible progressions for the first test of examples:

  • 1;
  • 2;
  • 3;
  • 4;
  • 5;
  • 6;
  • 7;
  • 8;
  • 9;
  • 10.

These are possible progressions for the second test of examples:

  • 6,?7;
  • 6,?8;
  • 6,?9;
  • 7,?6;
  • 7,?8;
  • 7,?9;
  • 8,?6;
  • 8,?7;
  • 8,?9;
  • 9,?6;
  • 9,?7;
  • 9,?8.

These are possible progressions for the third test of examples:

  • 1,?2,?4;
  • 1,?3,?9;
  • 2,?4,?8;
  • 4,?2,?1;
  • 4,?6,?9;
  • 8,?4,?2;
  • 9,?3,?1;
  • 9,?6,?4.

These are possible progressions for the fourth test of examples:

  • 4,?6,?9;
  • 9,?6,?4.

题意:给定 n, l and r ,求项数为n, 公比不为1,且数列每一项都属于[l,r]范围的不同的 等比数列 的个数。

题解:其实是先缩小范围然后直接枚举。

考虑数据范围1?≤?n?≤?107,?1?≤?l?≤?r?≤?10

设等比数列公比为d, d表示为 q/p,其中q或p为不同时等于1,且互质的正整数。

递增和递减数列的情况是成对出现的,即p和q互换。

所以不妨只考虑递增数列的情况,即公比d表示为q/p,其中pq互质,p为任意正整数,q>p,q为大于等于2的正整数。

则数列末项整除于qn-1 ,其中q>=2,2^24>10^7, 故n>=24时无解。

n=1时为结果为r-l+1, n=2时结果为(r-l+1)*(r-l),n>24时0.

n>=3&&n<24时,可以通过枚举出p和q的情况求解。

n>=3, 由于数列末项整除于qn-1 ,则qn-1 ≤?107,即枚举 p,q的上界是(1071/(n-1),当n=3时,这个值为3162,可以通过暴力枚举实现。

枚举p,q,

每找到一对(p,q)且gcd(p,q)==1

考虑数列末项  an= a1*qn-1/pn-1  ,

要满足 a1>=l, an<=r 的范围条件,若 l*qn-1/pn-1 >r 则不满足题意,continue;

若 l*qn-1/pn-1 <=r 则有满足[l,r]范围的等比数列

现在求[l,r]范围,公比为q/p,项数为n的等比数列的个数。

数列各项为 a1, a1*q/p ……a1*qn-1/qn-1qn-1pn-1  /pn-1 /pn-1 pn-1q/pq/pq/pn-1 ,等比数列的个数即为a1可能的值。

末项为moa1*qn-1/ pn-1  所以a1必整除于pn-1 ,即a1可能的值为 [l,r*pn-1/qn-1]范围内可被 pn-1整除的, 即 (r*pn-1/qn-1)/pn-1-l/pn-1

#include <bits/stdc++.h>
#define LL long long
using namespace std;

LL gcd(LL a, LL b){
    if(b==0) return a;
    else return gcd(b,a%b);
}

LL QuickPow(LL a, LL n){
    LL ret=1;
    while(n){
        if(n&1) ret*=a;
        a*=a;
        n>>=1;
    }
    return ret;
}

LL l,r,n;
LL ans;

int main()
{
    cin>>n>>l>>r;
    if(n>24){
        cout<<0;return 0;
    }
    if(n==1){
        cout<<r-l+1;return 0;
    }
    if(n==2){
        cout<<(r-l+1)*(r-l);return 0;
    }

    //n>=3&&n<24的情况
    LL upperlimit,pn,qn;
    //p,q的枚举上界
    upperlimit=pow(2,double(log2(1e7+50)/(n-1))); //注意精度
    for(LL p=1;p<=upperlimit;p++)
        for(LL q=p+1;q<=upperlimit;q++)
            if(gcd(p,q)==1)
            {
                qn=QuickPow(q,n-1);
                pn=QuickPow(p,n-1);
                if(l*qn/pn>r) continue;

                //a1可能的值 :[l,r*pn/qn]范围内可被 pn整除的正整数,
                ans+=(r*pn/qn)/pn-(l-1)/pn;
            }
       //递增数列递减数列成对出现,只考虑了递增数列
        cout<<ans*2;
        return 0;
}

a1*qn-1/qn-1qn-1pn-1  /pn-1 /pn-1 pn-1q/pq/pq/pn-1 qn-1/qn-1qn-1pn-1  /pn-1 /pn-1 pn-1q/pq/pq/pn的

时间: 2024-11-18 13:47:29

Codeforces Round #392 (Div. 2) F. Geometrical Progression的相关文章

map Codeforces Round #Pi (Div. 2) C. Geometric Progression

题目传送门 1 /* 2 题意:问选出3个数成等比数列有多少种选法 3 map:c1记录是第二个数或第三个数的选法,c2表示所有数字出现的次数.别人的代码很短,思维巧妙 4 */ 5 /************************************************ 6 * Author :Running_Time 7 * Created Time :2015-8-6 1:07:18 8 * File Name :C.cpp 9 *************************

Codeforces Round #486 (Div. 3) F. Rain and Umbrellas

Codeforces Round #486 (Div. 3) F. Rain and Umbrellas 题目连接: http://codeforces.com/group/T0ITBvoeEx/contest/988/problem/E Description Polycarp lives on a coordinate line at the point x=0. He goes to his friend that lives at the point x=a. Polycarp can

Codeforces Round #501 (Div. 3) F. Bracket Substring

题目链接 Codeforces Round #501 (Div. 3) F. Bracket Substring 题解 官方题解 http://codeforces.com/blog/entry/60949 ....看不懂 设dp[i][j][l]表示前i位,左括号-右括号=j,匹配到l了 状态转移,枚举下一个要填的括号,用next数组求状态的l,分别转移 代码 #include<bits/stdc++.h> using namespace std; const int maxn = 207;

Codeforces Round #531 (Div. 3) F. Elongated Matrix(状压DP)

F. Elongated Matrix 题目链接:https://codeforces.com/contest/1102/problem/F 题意: 给出一个n*m的矩阵,现在可以随意交换任意的两行,最后从上到下,从左到右形成一个序列s1,s2.....snm,满足对于任意相邻的两个数,它们差的绝对值的最大值为k. 现在问怎么交换行与行,可以使得最后的这个k最大. 题解: 人生中第一道状压dp~其实还是参考了这篇博客:https://blog.csdn.net/CSDNjiangshan/art

Codeforces Round #548 (Div. 2) F splay(新坑) + 思维

https://codeforces.com/contest/1139/problem/F 题意 有m个人,n道菜,每道菜有\(p_i\),\(s_i\),\(b_i\),每个人有\(inc_j\),\(pref_j\),一个人可以买一道菜的条件是 1. \(p_i \leq inc_j \leq s_i\) 2. \(|b_i - pref_j| \leq inc_j-p_i\) ,问每个人分别能买多少道菜 题解 转化一下公式 \(p_i \leq inc_j \leq s_i\) 下面两个满

Codeforces Round #549 (Div. 2) F 数形结合 + 凸包(新坑)

https://codeforces.com/contest/1143/problem/F 题意 有n条形如\(y=x^2+bx+c\)的抛物线,问有多少条抛物线上方没有其他抛物线的交点 题解 \(y=x^2+bx+c=>y+x^2=bx+c\),转换为点\((x,y+x^2)\)在bx+c的直线上 两个点确定一条抛物线,同时也确定了一条直线 需要选择最上面那些点相邻确定的抛物线,所以维护一个上凸包即可 维护上凸包,当前点在前进方向左边需要向后退,cross(a,b)>=0 代码 #inclu

Codeforces Round #530 (Div. 2)F Cookies (树形dp+线段树)

题:https://codeforces.com/contest/1099/problem/F 题意:给定一个树,每个节点有俩个信息x和t,分别表示这个节点上的饼干个数和先手吃掉这个节点上一个饼干的的时间.然后有先手和后手俩个人. ?先手可以这么操作:在规定总时间T到达某个节点然后一定要返回根节点1,期间可以选择吃掉某些节点上的某些饼干(前提是保证剩下的时间能够回到根节点): ?后手可以这么操作:在先手到达的位置和这个位置的孩子之间的连边选择一条让先手吃得更多的边摧毁掉,也可以跳过这个过程: 问

Codeforces Round #615 (Div. 3) F. Three Paths on a Tree

F. Three Paths on a Tree 原题链接:https://codeforces.com/contest/1294/problem/F 题目大意: 给定一棵树,选出三点,使三点连成的j简单路径最大.简而言之,三个点连成的边的集合大小. 解题思路: 假设任取一点为三点连线的公共点,最长路径就是这个点到其他三个点的三条最长边之和,可知这个点一定在直径上(画图分析假设不在时的最长路径可反证).所以先求出树的直径,在使用$ans =(a b+a c+b c) / 2$遍历可以得到第三个点

Codeforces Round #629 (Div. 3) F - Make k Equal (离散化 树状数组维护前缀和)

https://codeforces.com/contest/1328/problem/F 首先把a数组处理成pair对(num,cnt),表示数字num有cnt个,然后按num升序排序离散化一下. 对于一个数x,若想使得小于x的数字都变成x,必须先把所有小于x的数变成x-1,然后再+1变成x. 同理,要使得大于x的数变成x,必须把所有大于x的数字变成x+1,然后再-1变成x. 以上是题意所要求的必须操作. 思路: 1. 用f[i]数组记录离散化后前i大的数字的总数,那么对于任意第i大数字,可以