原题地址:http://codeforces.com/contest/758/problem/F
F. Geometrical Progression
time limit per test
4 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output
For given n, l and r find the number of distinct geometrical progression, each of which contains n distinct integers not less than l and not greater than r. In other words, for each progression the following must hold: l?≤?ai?≤?r and ai?≠?aj , where a1,?a2,?...,?an is the geometrical progression, 1?≤?i,?j?≤?n and i?≠?j.
Geometrical progression is a sequence of numbers a1,?a2,?...,?an where each term after first is found by multiplying the previous one by a fixed non-zero number d called the common ratio. Note that in our task d may be non-integer. For example in progression 4,?6,?9, common ratio is .
Two progressions a1,?a2,?...,?an and b1,?b2,?...,?bn are considered different, if there is such i (1?≤?i?≤?n) that ai?≠?bi.
Input
The first and the only line cotains three integers n, l and r (1?≤?n?≤?107,?1?≤?l?≤?r?≤?107).
Output
Print the integer K — is the answer to the problem.
Examples
Input
1 1 10
Output
10
Input
2 6 9
Output
12
Input
3 1 10
Output
8
Input
3 3 10
Output
2
Note
These are possible progressions for the first test of examples:
- 1;
- 2;
- 3;
- 4;
- 5;
- 6;
- 7;
- 8;
- 9;
- 10.
These are possible progressions for the second test of examples:
- 6,?7;
- 6,?8;
- 6,?9;
- 7,?6;
- 7,?8;
- 7,?9;
- 8,?6;
- 8,?7;
- 8,?9;
- 9,?6;
- 9,?7;
- 9,?8.
These are possible progressions for the third test of examples:
- 1,?2,?4;
- 1,?3,?9;
- 2,?4,?8;
- 4,?2,?1;
- 4,?6,?9;
- 8,?4,?2;
- 9,?3,?1;
- 9,?6,?4.
These are possible progressions for the fourth test of examples:
- 4,?6,?9;
- 9,?6,?4.
题意:给定 n, l and r ,求项数为n, 公比不为1,且数列每一项都属于[l,r]范围的不同的 等比数列 的个数。
题解:其实是先缩小范围然后直接枚举。
考虑数据范围1?≤?n?≤?107,?1?≤?l?≤?r?≤?107
设等比数列公比为d, d表示为 q/p,其中q或p为不同时等于1,且互质的正整数。
递增和递减数列的情况是成对出现的,即p和q互换。
所以不妨只考虑递增数列的情况,即公比d表示为q/p,其中pq互质,p为任意正整数,q>p,q为大于等于2的正整数。
则数列末项整除于qn-1 ,其中q>=2,2^24>10^7, 故n>=24时无解。
n=1时为结果为r-l+1, n=2时结果为(r-l+1)*(r-l),n>24时0.
n>=3&&n<24时,可以通过枚举出p和q的情况求解。
n>=3, 由于数列末项整除于qn-1 ,则qn-1 ≤?107,即枚举 p,q的上界是(107)1/(n-1),当n=3时,这个值为3162,可以通过暴力枚举实现。
枚举p,q,
每找到一对(p,q)且gcd(p,q)==1
考虑数列末项 an= a1*qn-1/pn-1 ,
要满足 a1>=l, an<=r 的范围条件,若 l*qn-1/pn-1 >r 则不满足题意,continue;
若 l*qn-1/pn-1 <=r 则有满足[l,r]范围的等比数列
现在求[l,r]范围,公比为q/p,项数为n的等比数列的个数。
数列各项为 a1, a1*q/p ……a1*qn-1/qn-1qn-1pn-1 /pn-1 /pn-1 pn-1q/pq/pq/pn-1 ,等比数列的个数即为a1可能的值。
末项为moa1*qn-1/ pn-1 所以a1必整除于pn-1 ,即a1可能的值为 [l,r*pn-1/qn-1]范围内可被 pn-1整除的, 即 (r*pn-1/qn-1)/pn-1-l/pn-1个
#include <bits/stdc++.h> #define LL long long using namespace std; LL gcd(LL a, LL b){ if(b==0) return a; else return gcd(b,a%b); } LL QuickPow(LL a, LL n){ LL ret=1; while(n){ if(n&1) ret*=a; a*=a; n>>=1; } return ret; } LL l,r,n; LL ans; int main() { cin>>n>>l>>r; if(n>24){ cout<<0;return 0; } if(n==1){ cout<<r-l+1;return 0; } if(n==2){ cout<<(r-l+1)*(r-l);return 0; } //n>=3&&n<24的情况 LL upperlimit,pn,qn; //p,q的枚举上界 upperlimit=pow(2,double(log2(1e7+50)/(n-1))); //注意精度 for(LL p=1;p<=upperlimit;p++) for(LL q=p+1;q<=upperlimit;q++) if(gcd(p,q)==1) { qn=QuickPow(q,n-1); pn=QuickPow(p,n-1); if(l*qn/pn>r) continue; //a1可能的值 :[l,r*pn/qn]范围内可被 pn整除的正整数, ans+=(r*pn/qn)/pn-(l-1)/pn; } //递增数列递减数列成对出现,只考虑了递增数列 cout<<ans*2; return 0; }
a1*qn-1/qn-1qn-1pn-1 /pn-1 /pn-1 pn-1q/pq/pq/pn-1 qn-1/qn-1qn-1pn-1 /pn-1 /pn-1 pn-1q/pq/pq/pn的