NOIP2011 聪明的质检员

描述

小 T 是一名质量监督员,最近负责检验一批矿产的质量。这批矿产共有n个矿石,从1到n逐一编号,每个矿石都有自己的重量wi以及价值vi。检验矿产的流程是:
1、给定m个区间[Li,Ri];
2、选出一个参数W;
3、对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi
Yi=(∑j1)∗(∑jvj) ,  j∈[Li,Ri]且wj≥WYi=(∑j1)∗(∑jvj) ,  j∈[Li,Ri]且wj≥W
j是矿石编号

这批矿产的检验结果Y 为各个区间的检验值之和。即:Y=∑i=1mYiY=∑i=1mYi
若这批矿产的检验结果与所给标准值S相差太多,就需要再去检验另一批矿产。小T不想费时间去检验另一批矿产,所以他想通过调整参数W的值,让检验结果尽可能的靠近标准值S,即使得S-Y的绝对值最小。请你帮忙求出这个最小值。

格式

输入格式

第一行包含三个整数n,m,S,分别表示矿石的个数、区间的个数和标准值。

接下来的n行,每行2个整数,中间用空格隔开,第i+1行表示i号矿石的重量wi和价值vi 。

接下来的m行,表示区间,每行2个整数,中间用空格隔开,第i+n+1行表示区间[Li,Ri]的两个端点Li和Ri。注意:不同区间可能重合或相互重叠。

输出格式

输出只有一行,包含一个整数,表示所求的最小值。

样例1

样例输入1[复制]

5 3 15
1 5
2 5
3 5
4 5
5 5
1 5
2 4
3 3

样例输出1[复制]

10

限制

1s

提示

样例说明:当W选4的时候,三个区间上检验值分别为20、5、0,这批矿产的检验结果为25,此时与标准值S相差最小为10。

对于10%的数据,有1 ≤ n,m ≤ 10;
对于30%的数据,有1 ≤ n,m ≤ 500;
对于50%的数据,有1 ≤ n,m ≤ 5,000;
对于70%的数据,有1 ≤ n,m ≤ 10,000;
对于100%的数据,有1 ≤ n,m ≤ 200,000,0 < wi, vi ≤ 10^6,0 < S ≤ 10^12,1 ≤ Li ≤ Ri ≤ n。

二分查找

 1 #include<iostream>
 2 #include<cstdio>
 3 #include<cstring>
 4 #include<algorithm>
 5 using namespace std;
 6
 7 const int MAXN=200000+10;
 8 int n,m;
 9 int W[MAXN],V[MAXN];
10 int L[MAXN],R[MAXN];
11 long long S,ans=0x7fffffffffffffff;//第一次忘记了longlong大小。。。WA了
12
13 long long cnt[MAXN]={0},sum[MAXN]={0};
14 long long check(long long w)
15 {
16     long long ans=0;
17     for(int i=1;i<=n;i++)
18     {
19         cnt[i]=cnt[i-1];
20         sum[i]=sum[i-1];
21         if(W[i]>=w)
22         {
23             cnt[i]++;
24             sum[i]+=V[i];
25         }
26     }
27     for(int i=1;i<=m;i++)
28         ans+=(cnt[R[i]]-cnt[L[i]-1])*(sum[R[i]]-sum[L[i]-1]);
29     return ans;
30 }
31
32 int main()
33 {
34     int Left=0x7fffffff,Right=0,mid;
35     scanf("%d %d %lld",&n,&m,&S);
36     for(int i=1;i<=n;i++)
37     {
38         scanf("%d %d",&W[i],&V[i]);
39         Left=min(Left,W[i]);
40         Right=max(Right,W[i]+1);
41     }
42     for(int i=1;i<=m;i++)
43         scanf("%d %d",&L[i],&R[i]);
44     while(Left+1<Right)
45     {
46         mid=(Left+Right)>>1;
47         long long temp=check(mid);
48         ans=min(ans,abs(S-temp));
49         if(temp<S)
50             Right=mid;
51         else
52             Left=mid;
53     }
54     printf("%lld",ans);
55     return 0;
56 }
时间: 2024-10-07 18:57:51

NOIP2011 聪明的质检员的相关文章

NOIP2011聪明的质监员题解

631. [NOIP2011] 聪明的质监员 ★★   输入文件:qc.in   输出文件:qc.out   简单对比时间限制:1 s   内存限制:128 MB [问题描述] 小 T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有n个矿石,从 1 到n逐一编号,每个矿石都有自己的重量wi以及价值vi.检验矿产的流程是: 1. 给定 m个区间[Li,Ri]: 2. 选出一个参数W: 3. 对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: Yi=∑j1×∑jvj, j∈[

[NOIP 2011] 聪明的质检员

聪明的质检员 描述 小 T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有n个矿石,从1到n逐一编号,每个矿石都有自己的重量wi以及价值vi.检验矿产的流程是:1.给定m个区间[Li,Ri]:2.选出一个参数W:3.对于一个区间[Li,Ri],计算矿石在这个区间上的 检验值$Y_i$:\[Y_i=(\sum_j {1}) \times(\sum_j v_j) ,j \in [L_i,R_i] \land \: w_i \geqslant W\] 其中 $j$ 为矿石编号 这批矿产的 

noip2011 聪明的质监员

P1314 聪明的质监员 322通过 1.5K提交 题目提供者该用户不存在 标签二分2011NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录 题目描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[Li,Ri]: 2 .选出一个参数 W: 3 .对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: 这批矿产的检验结果Y 为各个区间的

【NOIP2011】聪明的质检员

Description 小 T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有n个矿石,从 1 到n逐一编号,每个矿石都有自己的重量wi以及价值vi.检验矿产的流程是: 1. 给定 m个区间[Li,Ri]: 2. 选出一个参数W: 3. 对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi: 这批矿产的检验结果Y为各个区间的检验值之和.即: 若这批矿产的检验结果与所给标准值 S 相差太多,就需要再去检验另一批矿产.小 T 不想费时间去检验另一批矿产,所以他想通过调整参数 W

洛谷 [P1314] 聪明的质检员(NOIP2011 D2T2)

一道二分答案加前缀和 题目中已经暗示的很明显了 "尽可能靠近" " 最小值" 本题的主要坑点在于 long long 的使用 abs函数不支持long long !!! #include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include <cmath> using namespace std; cons

NOIP2015聪明的质检员[二分 | 预处理]

背景 NOIP2011 day2 第二题 描述 小T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有 n 个矿石,从 1到n 逐一编号,每个矿石都有自己的重量 wi 以及价值vi .检验矿产的流程是: 1 .给定m 个区间[Li ,Ri]: 2 .选出一个参数 W: 3 .对于一个区间[Li ,Ri],计算矿石在这个区间上的检验值Yi:Yi=Σ1*Σvj,Σ的循环变量为j,这里j要满足j∈[Li,Ri]且wj≥W,这里j是矿石编号. 这批矿产的检验结果Y为各个区间的检验值之和.ΣYi

Vijos P1740聪明的质检员

题目 描述 小 T 是一名质量监督员,最近负责检验一批矿产的质量.这批矿产共有n个矿石,从1到n逐一编号,每个矿石都有自己的重量wi以及价值vi.检验矿产的流程是:1.给定m个区间[Li,Ri]:2.选出一个参数W:3.对于一个区间[Li,Ri],计算矿石在这个区间上的检验值Yi:Yi = ∑1*∑vj,j∈[Li, Ri]且wj ≥ W,j是矿石编号这批矿产的检验结果Y 为各个区间的检验值之和.即:Y = ∑Yi,i ∈[1, m]若这批矿产的检验结果与所给标准值S相差太多,就需要再去检验另一

[NOIP2011]聪明的质监员 题解

题目大意: 额--貌似蛮清晰的,就不赘述了. 思路: 首先不难发现M越大Y越小,因此可以二分答案(方向不要弄错),二分出最小的不小于S的Y即可.而计算Y时可用前缀和O(n+m)求得.两种边界情况也要考虑一下(同时long long不要少开). 代码: 1 #include<cstdio> 2 #include<iostream> 3 using namespace std; 4 #define ll long long 5 const int M=200008; 6 int n,m

NOIP2011 聪明的质监员(二分)

由于我们并不清楚要求的W的值,但是我们知道W的值不超过矿石中价值最大的,如果W大于了矿石中价值最大的,那么Y的值为0,无法达到最优解. 因此,很容易就能想到在确定W的值要用二分的方法. 在分析这道题的时候,我们很容易知道Y的值是满足单调性的,当W的值越大,Y的值越小,因为W越大,能够选的矿石就越少. 所以我们把得到的Y值作为判断条件,如果Y比S小,就说明检验值了,而W取大了.每次更改W的同时给ans取最小值. 那么Y又应该怎么求出呢?题目中n,m最大有2*10^5,如果暴搜肯定超时,因此我们需要