区间型DP

区间型DP是一类经典的动态规划问题,主要特征是可以先将大区间拆分成小区间求解最后由小区间的解得到大区间的解。

有三道例题

一、石子合并

在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分。

试设计出1个算法,计算出将N堆石子合并成1堆的最小得分和最大得分.

二、能量项链

在Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为m*r*n(Mars单位),新产生的珠子的头标记为m,尾标记为n。

需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。

例如:设N=4,4颗珠子的头标记与尾标记依次为(2,3) (3,5) (5,10) (10,2)。我们用记号⊕表示两颗珠子的聚合操作,(j⊕k)表示第j,k两颗珠子聚合后所释放的能量。则第4、1两颗珠子聚合后释放的能量为:

(4⊕1)=10*2*3=60。

这一串项链可以得到最优值的一个聚合顺序所释放的总能量为

((4⊕1)⊕2)⊕3)=10*2*3+10*3*5+10*5*10=710。

三、关灯问题

某一村庄在一条路线上安装了n盏路灯,每盏灯的功率有大有小(即同一段时间内消耗的电量有多有少)。老张就住在这条路中间某一路灯旁,他有一项工作就是每天早上天亮时一盏一盏地关掉这些路灯。

为了给村里节省电费,老张记录下了每盏路灯的位置和功率,他每次关灯时也都是尽快地去关,但是老张不知道怎样去关灯才能够最节省电。他每天都是在天亮时首先关掉自己所处位置的路灯,然后可以向左也可以向右去关灯。开始他以为先算一下左边路灯的总功率再算一下右边路灯的总功率,然后选择先关掉功率大的一边,再回过头来关掉另一边的路灯,而事实并非如此,因为在关的过程中适当地调头有可能会更省一些。

现在已知老张走的速度为1m/s,每个路灯的位置(是一个整数,即距路线起点的距离,单位:m)、功率(W),老张关灯所用的时间很短而可以忽略不计。

请你为老张编一程序来安排关灯的顺序,使从老张开始关灯时刻算起所有灯消耗电最少(灯关掉后便不再消耗电了)。

这三道题中前两道是几乎一样的,首先他们都是环型所以先要断环为链,将环复制两遍成链,对原来的区间进行操作,这样我们在一些边界上就可以重复利用链的信息了。而这类题通用的解法一般是用f[i][j]表示i—j这个区间的最优值,而枚举顺序一般是最外层枚举区间长度,第二层枚举区间起点,最后一层枚举区间内的分界点(这两道题是先合并那两个子区间的再合并成一个区间,因为他们都是两个区间合并成一个区间的问题)最优值就从这些子区间的最优值转移过来就行了。

而第三题就稍有不同,但对于子问题的构建没有太大区别,f[i][j]表示关闭i-j区间的灯所消耗的最少电能,然后这个题有个特点就是他关完灯一定在区间的左端或右端的这个性质,从他所在的起点开始(因为起点的值是0,这是确定的,一层层的向外扩展,每次只比上次多关一盏,这样就可以慢慢的求出答案了。

总得来说这类dp最重要的是将大区间拆分成小区间求解最后由小区间的解得到大区间的解,而且对于两个子区间和并成一个大区间的问题枚举顺序往往是最外层枚举区间长度,第二层枚举区间起点,最后一层枚举区间内的分界点(例题还有括号序列),除此以外一般和区间的端点有关系(如山区建小学)。

时间: 2024-10-13 16:17:56

区间型DP的相关文章

hdoj1584 蜘蛛牌 区间型DP

题目链接 分析: f[i][j] 表示 把一串牌 牌 i 到 j 摞为一摞 时花费最少的步数. d[i][j] 表示把牌 i 挪到牌 j 上时需要走的步数(最初给的状态). 以一串牌 3~8 为例, 我们需要把牌 3 放到牌 4 上 , 而在最优的移动方案下, 牌 4 的位置不确定, 所以我们枚举牌 4 所在的位置(因为一共10张牌, 枚举是可以的), 这样得出状态转移方程: f[3][8] = min(f[3][8], f[4][k] + f[k][8] + d[3][k]); ( 4 <=

(区间型dp) poj 2955

Brackets Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 3615   Accepted: 1874 Description We give the following inductive definition of a “regular brackets” sequence: the empty sequence is a regular brackets sequence, if s is a regular

乘积最大---区间型dp

题目描述 Description 今年是国际数学联盟确定的"2000--世界数学年",又恰逢我国著名数学家华罗庚先生诞辰90周年.在华罗庚先生的家乡江苏金坛,组织了一场别开生面的数学智力竞赛的活动,你的一个好朋友XZ也有幸得以参加.活动中,主持人给所有参加活动的选手出了这样一道题目: 设有一个长度为N的数字串,要求选手使用K个乘号将它分成K+1个部分,找出一种分法,使得这K+1个部分的乘积能够为最大. 同时,为了帮助选手能够正确理解题意,主持人还举了如下的一个例子: 有一个数字串:31

区间型动态规划的记忆化搜索实现与环形动态规划的循环数组实现

区间型动态规划的典型例题是石子归并,同时使用记忆化搜索实现区间动归是一种比较容易实现的方式,避免了循环数组实现的时候一些边界的判断 n堆石子排列成一条线,我们可以将相邻的两堆石子进行合并,合并之后需要消耗的代价为这两堆石子的质量之和,问最小的合并代价 状态转移方程很容易给出: f[i][j]=min(f[i][j],f[i][k]+f[k+1][j]+sum[i][j]) 因为要计算区间和,考虑前缀和进行预处理 然后我们给出用记忆化搜索形式实现的代码,这里的记忆化搜索形式可以作为后续问题的一个模

HDU1561 The more, The Better(树型DP)

题目是有n个存有宝藏的城堡,攻克任何一个城堡都需要先攻克0个或其他1个城堡,问攻克m个城堡最多能得到多少宝藏. 题目给的城堡形成一个森林,添加一个超级根把森林连在一起就是树了,那么就考虑用树型DP: dp[u][m]表示以u结点为根的子树攻克m个结点的最大价值 但是这样转移太难了,根是从每个孩子通过各自分配若干的城堡去攻克转移的,一个排列组合数,阶乘,是指数级的时间复杂度! 看了题解,原来这是依赖背包,没看背包九讲..不过网上的博客似乎没说清楚,事实上这个状态应该是三个维度来表示: dp[u][

POJ3659 Cell Phone Network(树上最小支配集:树型DP)

题目求一棵树的最小支配数. 支配集,即把图的点分成两个集合,所有非支配集内的点都和支配集内的某一点相邻. 听说即使是二分图,最小支配集的求解也是还没多项式算法的.而树上求最小支配集树型DP就OK了. 树上的每个结点作为其子树的根可以有三个状态: 不属于支配集且还没被支配 不属于支配集但被其孩子支配 属于支配集 那么就是用dp[u][1\2\3]来表示动归的状态. 123转移该怎么转移就怎么转移..最后的结果就是min(dp[root][2],dp[root][3]). 要注意的是对于有些结点前2

HDU_1561_The more, The Better_树型dp

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1561 The more, The Better Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 7031    Accepted Submission(s): 4121 Problem Description ACboy很喜欢玩一种战略游戏,

HDU_1520_Anniversary party_树型dp

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1520 Anniversary party Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 8233    Accepted Submission(s): 3574 Problem Description There is going to b

二叉苹果树(树型DP+背包)

二叉苹果树 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点).这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来描述一根树枝的位置.下面是一颗有4个树枝的树: 2   5 \  / 3  4 \  / 1 现在这颗树枝条太多了,需要剪枝.但是一些树枝上长有苹果. 给定需要保留的树枝数量,求出最多能留住多少苹果. 程序名:apple 输入格式: 第1行2个数,N和Q(1<=Q<= N,1<N<=