LTE下行参考信号和上行参考信号有哪些 MBSFN 参考信号是什么

LTE下行参考信号和上行参考信号有哪些

在R9中,下行定义了四种参考信号,分别为分别为小区专用参考信号(C-RS),用户专用参考信号(UE-RS,又称DM-RS),MBSFN参考信号,位置参考信号(P-RS)。
在R10中,下行定义了五种参考信号,分别为小区专用参考信号(C-RS),用户专用参考信号(UE-RS,又称DM-RS),MBSFN参考信号,位置参考信号(P-RS),以及CSI参考信号(CSI-RS)。
TE上行采用单载波FDMA技术,参考信号和数据是采用TDM方式复用在一起的。上行参考信号用于如下两个目的。
(1)上行信道估计,用于eNode B端的相干检测和解调,称为DRS。
(2)上行信道质量测量,称为SRS。

MBSFN 参考信号是什么

http://www.mscbsc.com/askpro/question79664

MBSFN (Multicast Broadcast Single Frequency Network)

多播/组播单频网络(MBSFN),它要求同时传输来自多个小区的完全相同的波形。这样一来,UE接收机就能将多个MBSFN小区视为一个大的小区[1]。此外,UE不仅不会受到相邻小区传输的小区间干扰,而且将受益于来自多个MBSFN小区的信号的叠加。不仅如此,诸如G-RAKE等先进的UE接收机技术还能解决多径传播的时间差问题,从而消除小区内干扰。

MBSFN分成两种:专用载波的MBSFN和与单播(Unicast)混合载波的MBSFN,这里主要讨论混合载波MBSFNRS设计。MBSFNRS的设计有其特殊要求,在混合载波MBSFN系统的一个无线帧中,通常大部分资源用于单播业务,而只有个别子帧被用于MBSFN业务,典型的场景是在连续的单播子帧之内插有一个孤立的MBSFN子帧,这使得接收这个MBSFN子帧的终端无法像接收单播信号时那样在相邻子帧的RS之间进行内插信道估计。因此 MBSFN的RS设计必须能够支持一个孤立子帧内的信道估计。

另外,由于多小区合并大大增加了多径的数量,使MBSFN信号的频率选择性远远大于单播信号,因而需要更大的RS频域密度。基于上述考虑,经过研究后采纳了图5-21所示的 MBSFNRS结构(针对15kHz子载波间隔)。频域每两个子载波即插入一个RS,时域每 4个OFDM符号插入1列导频。需要说明的是,MBSFN采用的是扩展CP(Extended CP),使用15kHz子载波间隔时一个子帧包含12个OFDM符号。由于图5-20中已经定义了4种 RS,用于天线端口0~3(Antenna Port 0~3),图中以T0~T3示意,因此MBSFN RS被定义为用于天线端口4(Antenna Port 4)的RS,以T4示意。
MBSFN参考信号设计

MBSFN参考信号设计
子帧内的单播RS哪些需要保留,是另一个需要讨论的问题。为了在MBSFN子帧中传送 PDCCH、PCFICH和PHICH(最多可采用4个天线的发射分集),因此需要保留单播RS的第1和第2列,用于本子帧内PDCCH的解调。同时,这两列OFDM符号还必须使用常规CP(MBSFN子帧的其他OFDM符号使用扩展CP)。
采用这种设计,下行控制信道的信道估计只能进行频域的一维内插,会对PDCCH的信道估计性能有一定影响,而且还会降低时钟跟踪 (Time Tracking)的范围。而如果要进行时域内插信道估计,还需保留位于第4个OFDM符号的RS,并将这些RS符号的CP改为常规CP,这对MBSFN 子帧造成的损失过大。因此,也有提案甚至建议在MBSFN子帧中不保留单播RS。
但是,完全删除MBSFN子帧中的单播RS,也带来另一个严重的问题,即缺少了单播 RS,相邻小区UE就无法在这一子帧进行邻小区测量。而且,由于相邻小区的UE可能并不知道本小区内哪一帧是MBSFN子帧,就造成UE在任何有可能是 MBSFN子帧的子帧都不能进行邻小区测量,对邻小区测量的性能损失太大。
因此,经过权衡,还是决定对MBSFN子帧中的第1和第2符号采用常规CP,并保留单播导频,可以用于PDCCH、PCFICH和PHICH等信道的传输。子帧中的其他符号用于MBSFN信号传输。
除了和单播信号共享载波的MBSFN模式,另一种MBSFN模式是专用载波 (Dedicated-Carrier,DC)MBSFN,这种模式适合独占的载波部署,不需要和单播信号复用在一起。LTE DC MBSFN采用7.5kHz子载波间隔,所以符号长度是15kHz子载波间隔系统的两倍,因此这种配置的MBSFN系统的RS需要单独设计。经过研究,采纳了图5-22所示的7.5kHz子载波间隔DCMBSFNRS结构。从图中可以看出,考虑到子载波和符号长度的变化,这种结构的RS频域密度和时域密度和图5-21中的15kHz结构基本相同。

时间: 2024-08-04 09:35:25

LTE下行参考信号和上行参考信号有哪些 MBSFN 参考信号是什么的相关文章

LTE 下行PDSCH 信道功率分配-Pa、Pb

LTE 下行PDSCH 信道功率分配-Pa.Pb和其他系统类似, LTE下行信道或符号的功率开销是相对于参考信号( RS)功率进行设置的.RS.PBCH.PCFICH.PSS+SSS信道采用静态值方式功率设置,而PHICH.PDCCH, PDSCH信道既可以采用静态值方式也可以采用动态功率分配方式,采用哪种方式取决于PDCCH或PDSCH信道传输的内容.对于采用静态功率分配方式的信道,很好理解,即配置一个与RS信号功率的偏置.而动态功率分配方式有些复杂.为了更好了解动态功率分配方式, 首先,要明

LTE下行物理层传输机制(1)-天线端口Antenna Port和小区特定参考信号CRS

上篇博文<LTE物理传输资源(3)-时频资源>的最后提到了PCFICH等几种下行物理信道,这篇博文本来想写PCFICH信道的,但在准备写PCFICH的时候,发现需要用到天线端口的相关内容,而这些内容目前还没有写.所以本文就先写天线端口和下行参考信号的相关内容. 1.天线端口(Antenna Port)和参考信号(Reference Signal)的关系 天线端口是一个逻辑上的概念,它与物理天线并没有一一对应的关系.在下行链路中,天线端口与下行参考信号(Reference signal)是一一对

LTE Module User Documentation(翻译15)——示例程序、参考场景以及故障检测和调试技巧

LTE用户文档 (如有不当的地方,欢迎指正!) 21 Examples Programs(示例程序) 路径 src/lte/examples/ 包含一些示例仿真程序,这些例子表明如何仿真不同的LTE场景. 22 Reference scenarios(参考场景) 文献中可以找到大量的参考仿真场景.下面我们列出了其中一部分: [TR36814] 的 A.2 节提到的系统仿真场景. dual stripe model [R4-092042], 在示例程序  src/lte/examples/lena

LTE资源调度(4)-上行资源申请方式和BSR缓存状态报告

1.UE申请上行资源的途径 当UE需要向网侧发送数据的时候,必须要有上行RB资源,如果没有RB资源则需要先向网侧申请RB资源.UE有三种方式向网侧申请RB资源: (1)向网侧发送BSR.BSR的全称是Buffer Status Report,即缓存状态报告.UE可以在MAC层的PDU(即分组数据单元)中插入一个BSR控制单元来告诉网侧:我的某个或某几个逻辑信道组当前有多少数据需要发送,希望你能分配一些RB资源给我. 这种通过发送BSR控制单元的方式,可以让网侧知道UE需要发送的数据量,网侧可以针

LTE下行物理层传输机制(7)-DCI2格式和预编码矩阵的选择

TTI是动态调度资源的基本时间单位,每进行一次动态调度就是一个TTI,通常情况下,一个TTI就是1ms.如果eNB在调度下行RB资源的时候,发现可以进行空分复用,或者说1个TTI(Transmission Time Interval)内可以同时传输2个下行传输块(简称TB块,Transport Block),那么这个时候,网侧可能会使用DCI2.DCI2A等格式来传输PDSCH的控制信息.下面就具体介绍DCI2格式的内容,以及什么时候使用DCI2格式. 1.组成DCI2格式的bit内容 DCI2

LTE下行物理层传输机制(9)-集中式和分布式资源映射

LTE系统里,RB资源的动态调度是在eNB侧实现的,这里的"RB资源"实际上是特指虚拟RB(Virtual RB)而不是物理RB(Physical RB).VRB是MAC层在调度的时候使用的,属于逻辑上的概念,而PRB是物理层在实际映射RE资源的时候需要使用的,属于实际物理意义上的概念.VRB和PRB之间,存在着不同的映射关系:最简单的映射关系就是VRB的位置和PRB的位置是相同的,它们之间是一一对应的:另外一种复杂点的关系就是VRB和PRB并不是一一对应的,但是可以依赖某种特定的映射

LTE下行物理层传输机制(6)-下行资源分配方式(Resource Allocation Type)

下行RB的资源分配(Resource Allocation)有三种方式,分别是资源分配方式0.资源分配方式1和资源分配方式2.在上一篇博文<LTE下行物理层传输机制(5)-DCI格式的选择和DCI1A>中提到DCI1A的时候,提到DCI1A只能分配连续的RB,以及这种方式下RIV(Resource Indication Value )的计算,那么这种分配方式其实就是资源分配方式2.而DCI2和DCI2A格式使用的则是另外2种不同的分配方式,即资源分配方式0和资源分配方式1.因此在讲DCI2和D

LTE下行物理层传输机制(3)-PHICH信道

在阅读本文之前,建议先看下博文<LTE-TDD HARQ(1)-上行HARQ时序>,以便更好的理解本文内容. 本文主要包括的内容有: (1)什么是PHICH信道,它的作用是什么 (2)怎么来唯一的标识一个PHICH信道 (3)PHICH信道对应的REG实际映射的内容是什么 (4)PHICH信道的位置 1.什么是PHICH信道 PHICH信道即物理HARQ指示信道,英文全称是Physical hybrid ARQ indicator channel,作用是eNB通过该信道向终端反馈上行PUSCH

I、Q信号是如何产生的,I、Q信号复用的作用

接收机在中频部分实现模数变换和采样,采样后的信号和数字域的同频相乘,就可以得到基带的I.Q分量.在无线接口传输时,每一种使用特定的载波频率.码(扩频码和扰码)以及载波相对相位(I或Q)的信道都可以理解为一类物理信道. 上行信道的扩频包括两个操作:第一个是信道化操作,它将每一个数据符号转换为若干码片,因此增加了信号的带宽.每一个数据符号转换的码片数称为扩频因子.第二个是扰码操作,在此将扰码加在扩频信号上.在信道化操作时,I路 和 Q路的数据符号分别和正交扩频因子相乘.在扰码操作时,I路 和 Q路的