[概述]
ZXing ("zebra crossing") is an open-source, multi-format 1D/2D barcode image processing library implemented in Java, with ports to other languages.
开源地址:
https://github.com/zxing/zxing
[工程结构]
以ZXing.Net.Source.0.14.0.0版本为例,此文件目录下对应两个工程:
Base和WinMD,我们主要分析Base工程,其中:
ZXing.Net.Source.0.14.0.0\Base\Source\lib目录下的工程为源码工程,zxing.vs2012为源码工程Solution文件;
ZXing.Net.Source.0.14.0.0\Base\Clients\WindowsFormsDemo目录下的工程为ZXING输出类库的应用工程,WindowsFormsDemo为应用工程Solution文件。
[应用工程分析]
WindowsFormsDemo有三个Tab,分别为Decoder/Encoder/WebCam,分别实现图片读码/二维码生成/网络摄像头采样读码(主要调用了avicap32.dll,它是Windows API应用程序接口相关模块,用于对摄像头和其它视频硬件进行AⅥ电影和视频的截取,详见工程文件WebCam.cs)。
Decoder(图片读码):
private void btnStartDecoding_Click(object sender, EventArgs e) { var fileName = txtBarcodeImageFile.Text; if (!File.Exists(fileName)) { MessageBox.Show(this, String.Format("File not found: {0}", fileName), "Error", MessageBoxButtons.OK, MessageBoxIcon.Error); return; } using (var bitmap = (Bitmap)Bitmap.FromFile(fileName)) { if (TryOnlyMultipleQRCodes) Decode(bitmap, TryMultipleBarcodes, new List<BarcodeFormat> { BarcodeFormat.QR_CODE }); else Decode(bitmap, TryMultipleBarcodes, null); } } private void Decode(Bitmap image, bool tryMultipleBarcodes, IList<BarcodeFormat> possibleFormats) { resultPoints.Clear(); lastResults.Clear(); txtContent.Text = String.Empty; var timerStart = DateTime.Now.Ticks; Result[] results = null; barcodeReader.Options.PossibleFormats = possibleFormats; if (tryMultipleBarcodes) results = barcodeReader.DecodeMultiple(image); else { var result = barcodeReader.Decode(image); if (result != null) { results = new[] {result}; } } var timerStop = DateTime.Now.Ticks; if (results == null) { txtContent.Text = "No barcode recognized"; } labDuration.Text = new TimeSpan(timerStop - timerStart).Milliseconds.ToString("0 ms"); if (results != null) { foreach (var result in results) { if (result.ResultPoints.Length > 0) { var rect = new Rectangle((int) result.ResultPoints[0].X, (int) result.ResultPoints[0].Y, 1, 1); foreach (var point in result.ResultPoints) { if (point.X < rect.Left) rect = new Rectangle((int) point.X, rect.Y, rect.Width + rect.X - (int) point.X, rect.Height); if (point.X > rect.Right) rect = new Rectangle(rect.X, rect.Y, rect.Width + (int) point.X - rect.X, rect.Height); if (point.Y < rect.Top) rect = new Rectangle(rect.X, (int) point.Y, rect.Width, rect.Height + rect.Y - (int) point.Y); if (point.Y > rect.Bottom) rect = new Rectangle(rect.X, rect.Y, rect.Width, rect.Height + (int) point.Y - rect.Y); } using (var g = picBarcode.CreateGraphics()) { g.DrawRectangle(Pens.Green, rect); } } } } }
Encoder(二维码生成):
(待续)
WebCam(网络摄像头采样读码):
private void btnDecodeWebCam_Click(object sender, EventArgs e) { if (wCam == null) { wCam = new WebCam {Container = picWebCam}; wCam.OpenConnection(); webCamTimer = new Timer(); webCamTimer.Tick += webCamTimer_Tick; webCamTimer.Interval = 200; // Image derivation interval webCamTimer.Start(); btnDecodeWebCam.Text = "Decoding..."; // Update UI } else { webCamTimer.Stop(); webCamTimer = null; wCam.Dispose(); wCam = null; btnDecodeWebCam.Text = "Decode"; // Update UI } } void webCamTimer_Tick(object sender, EventArgs e) { var bitmap = wCam.GetCurrentImage(); // Derive a imaghe if (bitmap == null) return; Console.WriteLine("Bitmap width is:{0}, height is{1}. Camera is: {2} mega-pixel.", bitmap.Width, bitmap.Height, bitmap.Width* bitmap.Height/10000); var reader = new BarcodeReader(); var result = reader.Decode(bitmap); // Decode the image if (result != null) { txtTypeWebCam.Text = result.BarcodeFormat.ToString(); txtContentWebCam.Text = result.Text; } }
其中WebCam对象定义的各类对摄像头的参数设置和操作详见WebCam.cs。
[源码工程分析]
1.图像解码(Qrcode为例)
Qrcode解码流程为检测定位->解码,涉及的几个主要文件为:BarcodeReader.cs(createBinarizer)->BarcodeReaderGeneric.cs(createBinarizer)->HybridBinarizer.cs(createBinarizer)、QRCodeReader.cs,Detector.cs和FinderPatternFinder.cs,Decoder.cs。
HybridBinarizer.cs(createBinarizer)类实现位图的二值化处理,核心代码段为:
/// <summary> /// Calculates the final BitMatrix once for all requests. This could be called once from the /// constructor instead, but there are some advantages to doing it lazily, such as making /// profiling easier, and not doing heavy lifting when callers don‘t expect it. /// </summary> private void binarizeEntireImage() { if (matrix == null) { LuminanceSource source = LuminanceSource; int width = source.Width; int height = source.Height; if (width >= MINIMUM_DIMENSION && height >= MINIMUM_DIMENSION) { byte[] luminances = source.Matrix; int subWidth = width >> BLOCK_SIZE_POWER; if ((width & BLOCK_SIZE_MASK) != 0) { subWidth++; } int subHeight = height >> BLOCK_SIZE_POWER; if ((height & BLOCK_SIZE_MASK) != 0) { subHeight++; } int[][] blackPoints = calculateBlackPoints(luminances, subWidth, subHeight, width, height); var newMatrix = new BitMatrix(width, height); calculateThresholdForBlock(luminances, subWidth, subHeight, width, height, blackPoints, newMatrix); matrix = newMatrix; } else { // If the image is too small, fall back to the global histogram approach. matrix = base.BlackMatrix; } } } /// <summary> /// For each 8x8 block in the image, calculate the average black point using a 5x5 grid /// of the blocks around it. Also handles the corner cases (fractional blocks are computed based /// on the last 8 pixels in the row/column which are also used in the previous block). /// PS(Jay):This algrithm has big issue!!! Should be enhanced!!! /// </summary> /// <param name="luminances">The luminances.</param> /// <param name="subWidth">Width of the sub.</param> /// <param name="subHeight">Height of the sub.</param> /// <param name="width">The width.</param> /// <param name="height">The height.</param> /// <param name="blackPoints">The black points.</param> /// <param name="matrix">The matrix.</param> private static void calculateThresholdForBlock(byte[] luminances, int subWidth, int subHeight, int width, int height, int[][] blackPoints, BitMatrix matrix) { for (int y = 0; y < subHeight; y++) { int yoffset = y << BLOCK_SIZE_POWER; int maxYOffset = height - BLOCK_SIZE; if (yoffset > maxYOffset) { yoffset = maxYOffset; } for (int x = 0; x < subWidth; x++) { int xoffset = x << BLOCK_SIZE_POWER; int maxXOffset = width - BLOCK_SIZE; if (xoffset > maxXOffset) { xoffset = maxXOffset; } int left = cap(x, 2, subWidth - 3); int top = cap(y, 2, subHeight - 3); int sum = 0; for (int z = -2; z <= 2; z++) { int[] blackRow = blackPoints[top + z]; sum += blackRow[left - 2]; sum += blackRow[left - 1]; sum += blackRow[left]; sum += blackRow[left + 1]; sum += blackRow[left + 2]; } int average = sum / 25; thresholdBlock(luminances, xoffset, yoffset, average, width, matrix); } } } private static int cap(int value, int min, int max) { return value < min ? min : value > max ? max : value; } /// <summary> /// Applies a single threshold to an 8x8 block of pixels. /// </summary> /// <param name="luminances">The luminances.</param> /// <param name="xoffset">The xoffset.</param> /// <param name="yoffset">The yoffset.</param> /// <param name="threshold">The threshold.</param> /// <param name="stride">The stride.</param> /// <param name="matrix">The matrix.</param> private static void thresholdBlock(byte[] luminances, int xoffset, int yoffset, int threshold, int stride, BitMatrix matrix) { int offset = (yoffset * stride) + xoffset; for (int y = 0; y < BLOCK_SIZE; y++, offset += stride) { for (int x = 0; x < BLOCK_SIZE; x++) { int pixel = luminances[offset + x] & 0xff; // Comparison needs to be <=, so that black == 0 pixels are black, even if the threshold is 0. matrix[xoffset + x, yoffset + y] = (pixel <= threshold); } } } /// <summary> /// Calculates a single black point for each 8x8 block of pixels and saves it away. /// See the following thread for a discussion of this algorithm: /// http://groups.google.com/group/zxing/browse_thread/thread/d06efa2c35a7ddc0 /// </summary> /// <param name="luminances">The luminances.</param> /// <param name="subWidth">Width of the sub.</param> /// <param name="subHeight">Height of the sub.</param> /// <param name="width">The width.</param> /// <param name="height">The height.</param> /// <returns></returns> private static int[][] calculateBlackPoints(byte[] luminances, int subWidth, int subHeight, int width, int height) { int[][] blackPoints = new int[subHeight][]; for (int i = 0; i < subHeight; i++) { blackPoints[i] = new int[subWidth]; } for (int y = 0; y < subHeight; y++) { int yoffset = y << BLOCK_SIZE_POWER; int maxYOffset = height - BLOCK_SIZE; if (yoffset > maxYOffset) { yoffset = maxYOffset; } for (int x = 0; x < subWidth; x++) { int xoffset = x << BLOCK_SIZE_POWER; int maxXOffset = width - BLOCK_SIZE; if (xoffset > maxXOffset) { xoffset = maxXOffset; } int sum = 0; int min = 0xFF; int max = 0; for (int yy = 0, offset = yoffset * width + xoffset; yy < BLOCK_SIZE; yy++, offset += width) { for (int xx = 0; xx < BLOCK_SIZE; xx++) { int pixel = luminances[offset + xx] & 0xFF; // still looking for good contrast sum += pixel; if (pixel < min) { min = pixel; } if (pixel > max) { max = pixel; } } // short-circuit min/max tests once dynamic range is met if (max - min > MIN_DYNAMIC_RANGE) { // finish the rest of the rows quickly for (yy++, offset += width; yy < BLOCK_SIZE; yy++, offset += width) { for (int xx = 0; xx < BLOCK_SIZE; xx++) { sum += luminances[offset + xx] & 0xFF; } } } } // The default estimate is the average of the values in the block. int average = sum >> (BLOCK_SIZE_POWER * 2); if (max - min <= MIN_DYNAMIC_RANGE) { // If variation within the block is low, assume this is a block with only light or only // dark pixels. In that case we do not want to use the average, as it would divide this // low contrast area into black and white pixels, essentially creating data out of noise. // // The default assumption is that the block is light/background. Since no estimate for // the level of dark pixels exists locally, use half the min for the block. average = min >> 1; if (y > 0 && x > 0) { // Correct the "white background" assumption for blocks that have neighbors by comparing // the pixels in this block to the previously calculated black points. This is based on // the fact that dark barcode symbology is always surrounded by some amount of light // background for which reasonable black point estimates were made. The bp estimated at // the boundaries is used for the interior. // The (min < bp) is arbitrary but works better than other heuristics that were tried. int averageNeighborBlackPoint = (blackPoints[y - 1][x] + (2 * blackPoints[y][x - 1]) + blackPoints[y - 1][x - 1]) >> 2; if (min < averageNeighborBlackPoint) { average = averageNeighborBlackPoint; } } } blackPoints[y][x] = average; } } return blackPoints; }
这一段算法有存在改进的必要。在HybridBinarizer继承的GlobalHistogramBinarizer类中,是从图像中均匀取5行(覆盖整个图像高度),每行取中间五分之四作为样本;以灰度值为X轴,每个灰度值的像素个数为Y轴建立一个直方图,从直方图中取点数最多的一个灰度值,然后再去给其他的灰度值进行分数计算,按照点数乘以与最多点数灰度值的距离的平方来进行打分,选分数最高的一个灰度值。接下来在这两个灰度值中间选取一个区分界限,取的原则是尽量靠近中间并且要点数越少越好。界限有了以后就容易了,与整幅图像的每个点进行比较,如果灰度值比界限小的就是黑,在新的矩阵中将该点置1,其余的就是白,为0。此部分具体代码见GlobalHistogramBinarizer类的BlackMatrix()重写方法。这个算法的劣势是由于是全局计算阈值点,所以应对局部阴影不太理想(However, because it picks a global black point, it cannot handle difficult shadows and gradients.)。
QRCodeReader类实现了接口Reader,核心段代码为:
/// <summary> /// Locates and decodes a barcode in some format within an image. This method also accepts /// hints, each possibly associated to some data, which may help the implementation decode. /// </summary> /// <param name="image">image of barcode to decode</param> /// <param name="hints">passed as a <see cref="IDictionary{TKey, TValue}"/> from <see cref="DecodeHintType"/> /// to arbitrary data. The /// meaning of the data depends upon the hint type. The implementation may or may not do /// anything with these hints.</param> /// <returns> /// String which the barcode encodes /// </returns> public Result decode(BinaryBitmap image, IDictionary<DecodeHintType, object> hints) { DecoderResult decoderResult; ResultPoint[] points; if (image == null || image.BlackMatrix == null) { // something is wrong with the image return null; } if (hints != null && hints.ContainsKey(DecodeHintType.PURE_BARCODE)) // 纯barcode图片 { var bits = extractPureBits(image.BlackMatrix); if (bits == null) return null; decoderResult = decoder.decode(bits, hints); points = NO_POINTS; } else { var detectorResult = new Detector(image.BlackMatrix).detect(hints); // 检测barcode if (detectorResult == null) return null; decoderResult = decoder.decode(detectorResult.Bits, hints); // 解码barcode points = detectorResult.Points; } if (decoderResult == null) return null; // If the code was mirrored: swap the bottom-left and the top-right points. var data = decoderResult.Other as QRCodeDecoderMetaData; if (data != null) { data.applyMirroredCorrection(points); } var result = new Result(decoderResult.Text, decoderResult.RawBytes, points, BarcodeFormat.QR_CODE); var byteSegments = decoderResult.ByteSegments; if (byteSegments != null) { result.putMetadata(ResultMetadataType.BYTE_SEGMENTS, byteSegments); } var ecLevel = decoderResult.ECLevel; if (ecLevel != null) { result.putMetadata(ResultMetadataType.ERROR_CORRECTION_LEVEL, ecLevel); } if (decoderResult.StructuredAppend) { result.putMetadata(ResultMetadataType.STRUCTURED_APPEND_SEQUENCE, decoderResult.StructuredAppendSequenceNumber); result.putMetadata(ResultMetadataType.STRUCTURED_APPEND_PARITY, decoderResult.StructuredAppendParity); } return result; }
qrcode->detector目录下的Detector类:
namespace ZXing.QrCode.Internal { /// <summary> /// <p>Encapsulates logic that can detect a QR Code in an image, even if the QR Code /// is rotated or skewed, or partially obscured.</p> /// </summary> /// <author>Sean Owen</author> public class Detector { private readonly BitMatrix image; private ResultPointCallback resultPointCallback; /// <summary> /// Initializes a new instance of the <see cref="Detector"/> class. /// </summary> /// <param name="image">The image.</param> public Detector(BitMatrix image) { this.image = image; } /// <summary> /// Gets the image. /// </summary> virtual protected internal BitMatrix Image { get { return image; } } /// <summary> /// Gets the result point callback. /// </summary> virtual protected internal ResultPointCallback ResultPointCallback { get { return resultPointCallback; } } /// <summary> /// <p>Detects a QR Code in an image, simply.</p> /// </summary> /// <returns> /// <see cref="DetectorResult"/> encapsulating results of detecting a QR Code /// </returns> public virtual DetectorResult detect() { return detect(null); } /// <summary> /// <p>Detects a QR Code in an image, simply.</p> /// </summary> /// <param name="hints">optional hints to detector</param> /// <returns> /// <see cref="DetectorResult"/> encapsulating results of detecting a QR Code /// </returns> public virtual DetectorResult detect(IDictionary<DecodeHintType, object> hints) { resultPointCallback = hints == null || !hints.ContainsKey(DecodeHintType.NEED_RESULT_POINT_CALLBACK) ? null : (ResultPointCallback)hints[DecodeHintType.NEED_RESULT_POINT_CALLBACK]; FinderPatternFinder finder = new FinderPatternFinder(image, resultPointCallback); FinderPatternInfo info = finder.find(hints); if (info == null) return null; return processFinderPatternInfo(info); } /// <summary> /// Processes the finder pattern info. /// </summary> /// <param name="info">The info.</param> /// <returns></returns> protected internal virtual DetectorResult processFinderPatternInfo(FinderPatternInfo info) { FinderPattern topLeft = info.TopLeft; FinderPattern topRight = info.TopRight; FinderPattern bottomLeft = info.BottomLeft; float moduleSize = calculateModuleSize(topLeft, topRight, bottomLeft); if (moduleSize < 1.0f) { return null; } int dimension; if (!computeDimension(topLeft, topRight, bottomLeft, moduleSize, out dimension)) return null; Internal.Version provisionalVersion = Internal.Version.getProvisionalVersionForDimension(dimension); if (provisionalVersion == null) return null; int modulesBetweenFPCenters = provisionalVersion.DimensionForVersion - 7; AlignmentPattern alignmentPattern = null; // Anything above version 1 has an alignment pattern if (provisionalVersion.AlignmentPatternCenters.Length > 0) { // Guess where a "bottom right" finder pattern would have been float bottomRightX = topRight.X - topLeft.X + bottomLeft.X; float bottomRightY = topRight.Y - topLeft.Y + bottomLeft.Y; // Estimate that alignment pattern is closer by 3 modules // from "bottom right" to known top left location //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘" float correctionToTopLeft = 1.0f - 3.0f / (float)modulesBetweenFPCenters; //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘" int estAlignmentX = (int)(topLeft.X + correctionToTopLeft * (bottomRightX - topLeft.X)); //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘" int estAlignmentY = (int)(topLeft.Y + correctionToTopLeft * (bottomRightY - topLeft.Y)); // Kind of arbitrary -- expand search radius before giving up for (int i = 4; i <= 16; i <<= 1) { alignmentPattern = findAlignmentInRegion(moduleSize, estAlignmentX, estAlignmentY, (float)i); if (alignmentPattern == null) continue; break; } // If we didn‘t find alignment pattern... well try anyway without it } PerspectiveTransform transform = createTransform(topLeft, topRight, bottomLeft, alignmentPattern, dimension); BitMatrix bits = sampleGrid(image, transform, dimension); if (bits == null) return null; ResultPoint[] points; if (alignmentPattern == null) { points = new ResultPoint[] { bottomLeft, topLeft, topRight }; } else { points = new ResultPoint[] { bottomLeft, topLeft, topRight, alignmentPattern }; } return new DetectorResult(bits, points); } private static PerspectiveTransform createTransform(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft, ResultPoint alignmentPattern, int dimension) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘" float dimMinusThree = (float)dimension - 3.5f; float bottomRightX; float bottomRightY; float sourceBottomRightX; float sourceBottomRightY; if (alignmentPattern != null) { bottomRightX = alignmentPattern.X; bottomRightY = alignmentPattern.Y; sourceBottomRightX = sourceBottomRightY = dimMinusThree - 3.0f; } else { // Don‘t have an alignment pattern, just make up the bottom-right point bottomRightX = (topRight.X - topLeft.X) + bottomLeft.X; bottomRightY = (topRight.Y - topLeft.Y) + bottomLeft.Y; sourceBottomRightX = sourceBottomRightY = dimMinusThree; } return PerspectiveTransform.quadrilateralToQuadrilateral( 3.5f, 3.5f, dimMinusThree, 3.5f, sourceBottomRightX, sourceBottomRightY, 3.5f, dimMinusThree, topLeft.X, topLeft.Y, topRight.X, topRight.Y, bottomRightX, bottomRightY, bottomLeft.X, bottomLeft.Y); } private static BitMatrix sampleGrid(BitMatrix image, PerspectiveTransform transform, int dimension) { GridSampler sampler = GridSampler.Instance; return sampler.sampleGrid(image, dimension, dimension, transform); } /// <summary> <p>Computes the dimension (number of modules on a size) of the QR Code based on the position /// of the finder patterns and estimated module size.</p> /// </summary> private static bool computeDimension(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft, float moduleSize, out int dimension) { int tltrCentersDimension = MathUtils.round(ResultPoint.distance(topLeft, topRight) / moduleSize); int tlblCentersDimension = MathUtils.round(ResultPoint.distance(topLeft, bottomLeft) / moduleSize); dimension = ((tltrCentersDimension + tlblCentersDimension) >> 1) + 7; switch (dimension & 0x03) { // mod 4 case 0: dimension++; break; // 1? do nothing case 2: dimension--; break; case 3: return true; } return true; } /// <summary> <p>Computes an average estimated module size based on estimated derived from the positions /// of the three finder patterns.</p> /// </summary> protected internal virtual float calculateModuleSize(ResultPoint topLeft, ResultPoint topRight, ResultPoint bottomLeft) { // Take the average return (calculateModuleSizeOneWay(topLeft, topRight) + calculateModuleSizeOneWay(topLeft, bottomLeft)) / 2.0f; } /// <summary> <p>Estimates module size based on two finder patterns -- it uses /// {@link #sizeOfBlackWhiteBlackRunBothWays(int, int, int, int)} to figure the /// width of each, measuring along the axis between their centers.</p> /// </summary> private float calculateModuleSizeOneWay(ResultPoint pattern, ResultPoint otherPattern) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘" float moduleSizeEst1 = sizeOfBlackWhiteBlackRunBothWays((int)pattern.X, (int)pattern.Y, (int)otherPattern.X, (int)otherPattern.Y); //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘" float moduleSizeEst2 = sizeOfBlackWhiteBlackRunBothWays((int)otherPattern.X, (int)otherPattern.Y, (int)pattern.X, (int)pattern.Y); if (Single.IsNaN(moduleSizeEst1)) { return moduleSizeEst2 / 7.0f; } if (Single.IsNaN(moduleSizeEst2)) { return moduleSizeEst1 / 7.0f; } // Average them, and divide by 7 since we‘ve counted the width of 3 black modules, // and 1 white and 1 black module on either side. Ergo, divide sum by 14. return (moduleSizeEst1 + moduleSizeEst2) / 14.0f; } /// <summary> See {@link #sizeOfBlackWhiteBlackRun(int, int, int, int)}; computes the total width of /// a finder pattern by looking for a black-white-black run from the center in the direction /// of another point (another finder pattern center), and in the opposite direction too. /// </summary> private float sizeOfBlackWhiteBlackRunBothWays(int fromX, int fromY, int toX, int toY) { float result = sizeOfBlackWhiteBlackRun(fromX, fromY, toX, toY); // Now count other way -- don‘t run off image though of course float scale = 1.0f; int otherToX = fromX - (toX - fromX); if (otherToX < 0) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘" scale = (float)fromX / (float)(fromX - otherToX); otherToX = 0; } else if (otherToX >= image.Width) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘" scale = (float)(image.Width - 1 - fromX) / (float)(otherToX - fromX); otherToX = image.Width - 1; } //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘" int otherToY = (int)(fromY - (toY - fromY) * scale); scale = 1.0f; if (otherToY < 0) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘" scale = (float)fromY / (float)(fromY - otherToY); otherToY = 0; } else if (otherToY >= image.Height) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘" scale = (float)(image.Height - 1 - fromY) / (float)(otherToY - fromY); otherToY = image.Height - 1; } //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘" otherToX = (int)(fromX + (otherToX - fromX) * scale); result += sizeOfBlackWhiteBlackRun(fromX, fromY, otherToX, otherToY); return result - 1.0f; // -1 because we counted the middle pixel twice } /// <summary> <p>This method traces a line from a point in the image, in the direction towards another point. /// It begins in a black region, and keeps going until it finds white, then black, then white again. /// It reports the distance from the start to this point.</p> /// /// <p>This is used when figuring out how wide a finder pattern is, when the finder pattern /// may be skewed or rotated.</p> /// </summary> private float sizeOfBlackWhiteBlackRun(int fromX, int fromY, int toX, int toY) { // Mild variant of Bresenham‘s algorithm; // see http://en.wikipedia.org/wiki/Bresenham‘s_line_algorithm bool steep = Math.Abs(toY - fromY) > Math.Abs(toX - fromX); if (steep) { int temp = fromX; fromX = fromY; fromY = temp; temp = toX; toX = toY; toY = temp; } int dx = Math.Abs(toX - fromX); int dy = Math.Abs(toY - fromY); int error = -dx >> 1; int xstep = fromX < toX ? 1 : -1; int ystep = fromY < toY ? 1 : -1; // In black pixels, looking for white, first or second time. int state = 0; // Loop up until x == toX, but not beyond int xLimit = toX + xstep; for (int x = fromX, y = fromY; x != xLimit; x += xstep) { int realX = steep ? y : x; int realY = steep ? x : y; // Does current pixel mean we have moved white to black or vice versa? // Scanning black in state 0,2 and white in state 1, so if we find the wrong // color, advance to next state or end if we are in state 2 already if ((state == 1) == image[realX, realY]) { if (state == 2) { return MathUtils.distance(x, y, fromX, fromY); } state++; } error += dy; if (error > 0) { if (y == toY) { break; } y += ystep; error -= dx; } } // Found black-white-black; give the benefit of the doubt that the next pixel outside the image // is "white" so this last point at (toX+xStep,toY) is the right ending. This is really a // small approximation; (toX+xStep,toY+yStep) might be really correct. Ignore this. if (state == 2) { return MathUtils.distance(toX + xstep, toY, fromX, fromY); } // else we didn‘t find even black-white-black; no estimate is really possible return Single.NaN; } /// <summary> /// <p>Attempts to locate an alignment pattern in a limited region of the image, which is /// guessed to contain it. This method uses {@link AlignmentPattern}.</p> /// </summary> /// <param name="overallEstModuleSize">estimated module size so far</param> /// <param name="estAlignmentX">x coordinate of center of area probably containing alignment pattern</param> /// <param name="estAlignmentY">y coordinate of above</param> /// <param name="allowanceFactor">number of pixels in all directions to search from the center</param> /// <returns> /// <see cref="AlignmentPattern"/> if found, or null otherwise /// </returns> protected AlignmentPattern findAlignmentInRegion(float overallEstModuleSize, int estAlignmentX, int estAlignmentY, float allowanceFactor) { // Look for an alignment pattern (3 modules in size) around where it // should be //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘" int allowance = (int)(allowanceFactor * overallEstModuleSize); int alignmentAreaLeftX = Math.Max(0, estAlignmentX - allowance); int alignmentAreaRightX = Math.Min(image.Width - 1, estAlignmentX + allowance); if (alignmentAreaRightX - alignmentAreaLeftX < overallEstModuleSize * 3) { return null; } int alignmentAreaTopY = Math.Max(0, estAlignmentY - allowance); int alignmentAreaBottomY = Math.Min(image.Height - 1, estAlignmentY + allowance); var alignmentFinder = new AlignmentPatternFinder( image, alignmentAreaLeftX, alignmentAreaTopY, alignmentAreaRightX - alignmentAreaLeftX, alignmentAreaBottomY - alignmentAreaTopY, overallEstModuleSize, resultPointCallback); return alignmentFinder.find(); } } }
qrcode->detector目录下的FinderPatternFinder类:
/* * Copyright 2007 ZXing authors * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ using System; using System.Collections.Generic; using ZXing.Common; namespace ZXing.QrCode.Internal { /// <summary> /// <p>This class attempts to find finder patterns in a QR Code. Finder patterns are the square /// markers at three corners of a QR Code.</p> /// /// <p>This class is thread-safe but not reentrant. Each thread must allocate its own object. /// </summary> /// <author>Sean Owen</author> public class FinderPatternFinder { private const int CENTER_QUORUM = 2; /// <summary> /// 1 pixel/module times 3 modules/center /// </summary> protected internal const int MIN_SKIP = 3; /// <summary> /// support up to version 10 for mobile clients /// </summary> protected internal const int MAX_MODULES = 57; private const int INTEGER_MATH_SHIFT = 8; private readonly BitMatrix image; private List<FinderPattern> possibleCenters; // Records the alignment patterns cordination information private bool hasSkipped; private readonly int[] crossCheckStateCount; private readonly ResultPointCallback resultPointCallback; /// <summary> /// <p>Creates a finder that will search the image for three finder patterns.</p> /// </summary> /// <param name="image">image to search</param> public FinderPatternFinder(BitMatrix image) : this(image, null) { } /// <summary> /// Initializes a new instance of the <see cref="FinderPatternFinder"/> class. /// </summary> /// <param name="image">The image.</param> /// <param name="resultPointCallback">The result point callback.</param> public FinderPatternFinder(BitMatrix image, ResultPointCallback resultPointCallback) { this.image = image; this.possibleCenters = new List<FinderPattern>(); this.crossCheckStateCount = new int[5]; this.resultPointCallback = resultPointCallback; } /// <summary> /// Gets the image. /// </summary> virtual protected internal BitMatrix Image { get { return image; } } /// <summary> /// Gets the possible centers. /// </summary> virtual protected internal List<FinderPattern> PossibleCenters { get { return possibleCenters; } } internal virtual FinderPatternInfo find(IDictionary<DecodeHintType, object> hints) { bool tryHarder = hints != null && hints.ContainsKey(DecodeHintType.TRY_HARDER); bool pureBarcode = hints != null && hints.ContainsKey(DecodeHintType.PURE_BARCODE); int maxI = image.Height; int maxJ = image.Width; // We are looking for black/white/black/white/black modules in // 1:1:3:1:1 ratio; this tracks the number of such modules seen so far // Let‘s assume that the maximum version QR Code we support takes up 1/4 the height of the // image, and then account for the center being 3 modules in size. This gives the smallest // number of pixels the center could be, so skip this often. When trying harder, look for all // QR versions regardless of how dense they are. int iSkip = (3 * maxI) / (4 * MAX_MODULES); if (iSkip < MIN_SKIP || tryHarder) { iSkip = MIN_SKIP; } bool done = false; int[] stateCount = new int[5]; for (int i = iSkip - 1; i < maxI && !done; i += iSkip) { // Get a row of black/white values stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; int currentState = 0; for (int j = 0; j < maxJ; j++) { if (image[j, i]) { // Black pixel if ((currentState & 1) == 1) { // Counting white pixels currentState++; } stateCount[currentState]++; } else { // White pixel if ((currentState & 1) == 0) { // Counting black pixels if (currentState == 4) { // A winner? if (foundPatternCross(stateCount)) { // Yes(possible alignment pattern was found) bool confirmed = handlePossibleCenter(stateCount, i, j, pureBarcode); // Check whether the alignment pattern is true or fake if (confirmed) { // Start examining every other line. Checking each line turned out to be too // expensive and didn‘t improve performance. iSkip = 2; if (hasSkipped) // If at least two alignment patterns were found and the skip parameter has been calculated { done = haveMultiplyConfirmedCenters(); // Check whether we have found at least 3 finder patterns } else { int rowSkip = findRowSkip(); // Calculate number of rows we could safely skip during scanning, based on the first two finder patterns if (rowSkip > stateCount[2]) { // Skip rows between row of lower confirmed center and top of presumed third confirmed center // but back up a bit to get a full chance of detecting it, entire width of center of finder pattern // Skip by rowSkip, but back off by stateCount[2] (size of last center of pattern we saw) // to be conservative, and also back off by iSkip which is about to be re-added i += rowSkip - stateCount[2] - iSkip; j = maxJ - 1; } } } else { stateCount[0] = stateCount[2]; stateCount[1] = stateCount[3]; stateCount[2] = stateCount[4]; stateCount[3] = 1; stateCount[4] = 0; currentState = 3; continue; } // Clear state to start looking again currentState = 0; stateCount[0] = 0; stateCount[1] = 0; stateCount[2] = 0; stateCount[3] = 0; stateCount[4] = 0; } else { // No, shift counts back by two stateCount[0] = stateCount[2]; stateCount[1] = stateCount[3]; stateCount[2] = stateCount[4]; stateCount[3] = 1; stateCount[4] = 0; currentState = 3; } } else { stateCount[++currentState]++; } } else { // Counting white pixels stateCount[currentState]++; } } } if (foundPatternCross(stateCount)) { bool confirmed = handlePossibleCenter(stateCount, i, maxJ, pureBarcode); if (confirmed) { iSkip = stateCount[0]; if (hasSkipped) { // Found a third one done = haveMultiplyConfirmedCenters(); } } } } FinderPattern[] patternInfo = selectBestPatterns(); if (patternInfo == null) return null; ResultPoint.orderBestPatterns(patternInfo); return new FinderPatternInfo(patternInfo); } /// <summary> Given a count of black/white/black/white/black pixels just seen and an end position, /// figures the location of the center of this run. /// </summary> private static float? centerFromEnd(int[] stateCount, int end) { var result = (end - stateCount[4] - stateCount[3]) - stateCount[2] / 2.0f; if (Single.IsNaN(result)) return null; return result; } /// <param name="stateCount">count of black/white/black/white/black pixels just read /// </param> /// <returns> true iff the proportions of the counts is close enough to the 1/1/3/1/1 ratios /// used by finder patterns to be considered a match /// </returns> protected internal static bool foundPatternCross(int[] stateCount) { int totalModuleSize = 0; for (int i = 0; i < 5; i++) { int count = stateCount[i]; if (count == 0) { return false; } totalModuleSize += count; } if (totalModuleSize < 7) { return false; } int moduleSize = (totalModuleSize << INTEGER_MATH_SHIFT) / 7; // 1+1+3+1+1=7, at least 7 modules int maxVariance = moduleSize / 2; // Allow less than 50% variance from 1-1-3-1-1 proportions return Math.Abs(moduleSize - (stateCount[0] << INTEGER_MATH_SHIFT)) < maxVariance && Math.Abs(moduleSize - (stateCount[1] << INTEGER_MATH_SHIFT)) < maxVariance && Math.Abs(3 * moduleSize - (stateCount[2] << INTEGER_MATH_SHIFT)) < 3 * maxVariance && Math.Abs(moduleSize - (stateCount[3] << INTEGER_MATH_SHIFT)) < maxVariance && Math.Abs(moduleSize - (stateCount[4] << INTEGER_MATH_SHIFT)) < maxVariance; } private int[] CrossCheckStateCount { get { crossCheckStateCount[0] = 0; crossCheckStateCount[1] = 0; crossCheckStateCount[2] = 0; crossCheckStateCount[3] = 0; crossCheckStateCount[4] = 0; return crossCheckStateCount; } } /// <summary> /// After a vertical and horizontal scan finds a potential finder pattern, this method /// "cross-cross-cross-checks" by scanning down diagonally through the center of the possible /// finder pattern to see if the same proportion is detected. /// </summary> /// <param name="startI">row where a finder pattern was detected</param> /// <param name="centerJ">center of the section that appears to cross a finder pattern</param> /// <param name="maxCount">maximum reasonable number of modules that should be observed in any reading state, based on the results of the horizontal scan</param> /// <param name="originalStateCountTotal">The original state count total.</param> /// <returns>true if proportions are withing expected limits</returns> private bool crossCheckDiagonal(int startI, int centerJ, int maxCount, int originalStateCountTotal) { int maxI = image.Height; int maxJ = image.Width; int[] stateCount = CrossCheckStateCount; // Start counting up, left from center finding black center mass int i = 0; while (startI - i >= 0 && image[centerJ - i, startI - i]) { stateCount[2]++; i++; } if ((startI - i < 0) || (centerJ - i < 0)) { return false; } // Continue up, left finding white space while ((startI - i >= 0) && (centerJ - i >= 0) && !image[centerJ - i, startI - i] && stateCount[1] <= maxCount) { stateCount[1]++; i++; } // If already too many modules in this state or ran off the edge: if ((startI - i < 0) || (centerJ - i < 0) || stateCount[1] > maxCount) { return false; } // Continue up, left finding black border while ((startI - i >= 0) && (centerJ - i >= 0) && image[centerJ - i, startI - i] && stateCount[0] <= maxCount) { stateCount[0]++; i++; } if (stateCount[0] > maxCount) { return false; } // Now also count down, right from center i = 1; while ((startI + i < maxI) && (centerJ + i < maxJ) && image[centerJ + i, startI + i]) { stateCount[2]++; i++; } // Ran off the edge? if ((startI + i >= maxI) || (centerJ + i >= maxJ)) { return false; } while ((startI + i < maxI) && (centerJ + i < maxJ) && !image[centerJ + i, startI + i] && stateCount[3] < maxCount) { stateCount[3]++; i++; } if ((startI + i >= maxI) || (centerJ + i >= maxJ) || stateCount[3] >= maxCount) { return false; } while ((startI + i < maxI) && (centerJ + i < maxJ) && image[centerJ + i, startI + i] && stateCount[4] < maxCount) { stateCount[4]++; i++; } if (stateCount[4] >= maxCount) { return false; } // If we found a finder-pattern-like section, but its size is more than 100% different than // the original, assume it‘s a false positive int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; return Math.Abs(stateCountTotal - originalStateCountTotal) < 2*originalStateCountTotal && foundPatternCross(stateCount); } /// <summary> /// <p>After a horizontal scan finds a potential finder pattern, this method /// "cross-checks" by scanning down vertically through the center of the possible /// finder pattern to see if the same proportion is detected.</p> /// </summary> /// <param name="startI">row where a finder pattern was detected</param> /// <param name="centerJ">center of the section that appears to cross a finder pattern</param> /// <param name="maxCount">maximum reasonable number of modules that should be /// observed in any reading state, based on the results of the horizontal scan</param> /// <param name="originalStateCountTotal">The original state count total.</param> /// <returns> /// vertical center of finder pattern, or null if not found /// </returns> private float? crossCheckVertical(int startI, int centerJ, int maxCount, int originalStateCountTotal) { int maxI = image.Height; int[] stateCount = CrossCheckStateCount; // Start counting up from center int i = startI; while (i >= 0 && image[centerJ, i]) { stateCount[2]++; i--; } if (i < 0) { return null; } while (i >= 0 && !image[centerJ, i] && stateCount[1] <= maxCount) { stateCount[1]++; i--; } // If already too many modules in this state or ran off the edge: if (i < 0 || stateCount[1] > maxCount) { return null; } while (i >= 0 && image[centerJ, i] && stateCount[0] <= maxCount) { stateCount[0]++; i--; } if (stateCount[0] > maxCount) { return null; } // Now also count down from center i = startI + 1; while (i < maxI && image[centerJ, i]) { stateCount[2]++; i++; } if (i == maxI) { return null; } while (i < maxI && !image[centerJ, i] && stateCount[3] < maxCount) { stateCount[3]++; i++; } if (i == maxI || stateCount[3] >= maxCount) { return null; } while (i < maxI && image[centerJ, i] && stateCount[4] < maxCount) { stateCount[4]++; i++; } if (stateCount[4] >= maxCount) { return null; } // If we found a finder-pattern-like section, but its size is more than 40% different than // the original, assume it‘s a false positive int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; if (5 * Math.Abs(stateCountTotal - originalStateCountTotal) >= 2 * originalStateCountTotal) { return null; } return foundPatternCross(stateCount) ? centerFromEnd(stateCount, i) : null; } /// <summary> <p>Like {@link #crossCheckVertical(int, int, int, int)}, and in fact is basically identical, /// except it reads horizontally instead of vertically. This is used to cross-cross /// check a vertical cross check and locate the real center of the alignment pattern.</p> /// </summary> private float? crossCheckHorizontal(int startJ, int centerI, int maxCount, int originalStateCountTotal) { int maxJ = image.Width; int[] stateCount = CrossCheckStateCount; int j = startJ; while (j >= 0 && image[j, centerI]) { stateCount[2]++; j--; } if (j < 0) { return null; } while (j >= 0 && !image[j, centerI] && stateCount[1] <= maxCount) { stateCount[1]++; j--; } if (j < 0 || stateCount[1] > maxCount) { return null; } while (j >= 0 && image[j, centerI] && stateCount[0] <= maxCount) { stateCount[0]++; j--; } if (stateCount[0] > maxCount) { return null; } j = startJ + 1; while (j < maxJ && image[j, centerI]) { stateCount[2]++; j++; } if (j == maxJ) { return null; } while (j < maxJ && !image[j, centerI] && stateCount[3] < maxCount) { stateCount[3]++; j++; } if (j == maxJ || stateCount[3] >= maxCount) { return null; } while (j < maxJ && image[j, centerI] && stateCount[4] < maxCount) { stateCount[4]++; j++; } if (stateCount[4] >= maxCount) { return null; } // If we found a finder-pattern-like section, but its size is significantly different than // the original, assume it‘s a false positive int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; if (5 * Math.Abs(stateCountTotal - originalStateCountTotal) >= originalStateCountTotal) { return null; } return foundPatternCross(stateCount) ? centerFromEnd(stateCount, j) : null; } /// <summary> /// <p>This is called when a horizontal scan finds a possible alignment pattern. It will /// cross check with a vertical scan, and if successful, will, ah, cross-cross-check /// with another horizontal scan. This is needed primarily to locate the real horizontal /// center of the pattern in cases of extreme skew. /// And then we cross-cross-cross check with another diagonal scan.</p> /// If that succeeds the finder pattern location is added to a list that tracks /// the number of times each location has been nearly-matched as a finder pattern. /// Each additional find is more evidence that the location is in fact a finder /// pattern center /// </summary> /// <param name="stateCount">reading state module counts from horizontal scan</param> /// <param name="i">row where finder pattern may be found</param> /// <param name="j">end of possible finder pattern in row</param> /// <param name="pureBarcode">if set to <c>true</c> [pure barcode].</param> /// <returns> /// true if a finder pattern candidate was found this time /// </returns> protected bool handlePossibleCenter(int[] stateCount, int i, int j, bool pureBarcode) { int stateCountTotal = stateCount[0] + stateCount[1] + stateCount[2] + stateCount[3] + stateCount[4]; float? centerJ = centerFromEnd(stateCount, j); if (centerJ == null) return false; float? centerI = crossCheckVertical(i, (int)centerJ.Value, stateCount[2], stateCountTotal); // Cross Check Vertical if (centerI != null) { // Re-cross check centerJ = crossCheckHorizontal((int)centerJ.Value, (int)centerI.Value, stateCount[2], stateCountTotal); // Cross Check Horizontal if (centerJ != null && (!pureBarcode || crossCheckDiagonal((int) centerI, (int) centerJ, stateCount[2], stateCountTotal))) // Cross Check Diagonal { float estimatedModuleSize = stateCountTotal / 7.0f; bool found = false; for (int index = 0; index < possibleCenters.Count; index++) { var center = possibleCenters[index]; // Look for about the same center and module size: if (center.aboutEquals(estimatedModuleSize, centerI.Value, centerJ.Value)) { possibleCenters.RemoveAt(index); possibleCenters.Insert(index, center.combineEstimate(centerI.Value, centerJ.Value, estimatedModuleSize)); found = true; break; } } if (!found) { var point = new FinderPattern(centerJ.Value, centerI.Value, estimatedModuleSize); possibleCenters.Add(point); if (resultPointCallback != null) { resultPointCallback(point); } } return true; } } return false; } /// <returns> number of rows we could safely skip during scanning, based on the first /// two finder patterns that have been located. In some cases their position will /// allow us to infer that the third pattern must lie below a certain point farther /// down in the image. /// </returns> private int findRowSkip() { int max = possibleCenters.Count; if (max <= 1) { return 0; } ResultPoint firstConfirmedCenter = null; foreach (var center in possibleCenters) { if (center.Count >= CENTER_QUORUM) { if (firstConfirmedCenter == null) { firstConfirmedCenter = center; } else { // We have two confirmed centers // How far down can we skip before resuming looking for the next // pattern? In the worst case, only the difference between the // difference in the x / y coordinates of the two centers. // This is the case where you find top left last. hasSkipped = true; //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. "ms-help://MS.VSCC.v80/dv_commoner/local/redirect.htm?index=‘!DefaultContextWindowIndex‘&keyword=‘jlca1042‘" return (int)(Math.Abs(firstConfirmedCenter.X - center.X) - Math.Abs(firstConfirmedCenter.Y - center.Y)) / 2; } } } return 0; } /// <returns> true if we have found at least 3 finder patterns that have been detected /// at least {@link #CENTER_QUORUM} times each, and, the estimated module size of the /// candidates is "pretty similar" /// </returns> private bool haveMultiplyConfirmedCenters() { int confirmedCount = 0; float totalModuleSize = 0.0f; int max = possibleCenters.Count; foreach (var pattern in possibleCenters) { if (pattern.Count >= CENTER_QUORUM) { confirmedCount++; totalModuleSize += pattern.EstimatedModuleSize; } } if (confirmedCount < 3) { return false; } // OK, we have at least 3 confirmed centers, but, it‘s possible that one is a "false positive" // and that we need to keep looking. We detect this by asking if the estimated module sizes // vary too much. We arbitrarily say that when the total deviation from average exceeds // 5% of the total module size estimates, it‘s too much. float average = totalModuleSize / max; float totalDeviation = 0.0f; for (int i = 0; i < max; i++) { var pattern = possibleCenters[i]; totalDeviation += Math.Abs(pattern.EstimatedModuleSize - average); } return totalDeviation <= 0.05f * totalModuleSize; } /// <returns> the 3 best {@link FinderPattern}s from our list of candidates. The "best" are /// those that have been detected at least {@link #CENTER_QUORUM} times, and whose module /// size differs from the average among those patterns the least /// </returns> private FinderPattern[] selectBestPatterns() { int startSize = possibleCenters.Count; if (startSize < 3) { // Couldn‘t find enough finder patterns return null; } // Filter outlier possibilities whose module size is too different if (startSize > 3) { // But we can only afford to do so if we have at least 4 possibilities to choose from float totalModuleSize = 0.0f; float square = 0.0f; foreach (var center in possibleCenters) { float size = center.EstimatedModuleSize; totalModuleSize += size; square += size * size; } float average = totalModuleSize / startSize; float stdDev = (float)Math.Sqrt(square / startSize - average * average); possibleCenters.Sort(new FurthestFromAverageComparator(average)); float limit = Math.Max(0.2f * average, stdDev); for (int i = 0; i < possibleCenters.Count && possibleCenters.Count > 3; i++) { FinderPattern pattern = possibleCenters[i]; if (Math.Abs(pattern.EstimatedModuleSize - average) > limit) { possibleCenters.RemoveAt(i); i--; } } } if (possibleCenters.Count > 3) { // Throw away all but those first size candidate points we found. float totalModuleSize = 0.0f; foreach (var possibleCenter in possibleCenters) { totalModuleSize += possibleCenter.EstimatedModuleSize; } float average = totalModuleSize / possibleCenters.Count; possibleCenters.Sort(new CenterComparator(average)); //possibleCenters.subList(3, possibleCenters.Count).clear(); possibleCenters = possibleCenters.GetRange(0, 3); } return new[] { possibleCenters[0], possibleCenters[1], possibleCenters[2] }; } /// <summary> /// Orders by furthest from average /// </summary> private sealed class FurthestFromAverageComparator : IComparer<FinderPattern> { private readonly float average; public FurthestFromAverageComparator(float f) { average = f; } public int Compare(FinderPattern x, FinderPattern y) { float dA = Math.Abs(y.EstimatedModuleSize - average); float dB = Math.Abs(x.EstimatedModuleSize - average); return dA < dB ? -1 : dA == dB ? 0 : 1; } } /// <summary> <p>Orders by {@link FinderPattern#getCount()}, descending.</p></summary> private sealed class CenterComparator : IComparer<FinderPattern> { private readonly float average; public CenterComparator(float f) { average = f; } public int Compare(FinderPattern x, FinderPattern y) { if (y.Count == x.Count) { float dA = Math.Abs(y.EstimatedModuleSize - average); float dB = Math.Abs(x.EstimatedModuleSize - average); return dA < dB ? 1 : dA == dB ? 0 : -1; } return y.Count - x.Count; } } } }
寻找PatternFinder流程为:先按照1:1:3:1:1的比例逐行扫描,寻找Qrcode的定位点并校验点位点(横向,竖向,对角线斜向),找到最初两个定位点以后,
通过findRowSkip()更新隔行检测参数提高检测效率,继续寻找定位点直至定位点全部找到,然后通过selectBestPatterns()选择最优的定位点,然后将最优
定位点相关信息处理后返回供上层调用。
qrcode->decoder目录下的Decoder(密封)类:
2.源码架构
BarcodeReader类继承了BarcodeReaderGeneric类,实现了接口IBarcodeReader, IMultipleBarcodeReader:
public class BarcodeReader : BarcodeReaderGeneric<Bitmap>, IBarcodeReader, IMultipleBarcodeReader
BarcodeReaderGeneric类实现了接口IBarcodeReaderGeneric<T>, IMultipleBarcodeReaderGeneric<T>。其中Decode虚拟方法为:
/// <summary> /// Tries to decode a barcode within an image which is given by a luminance source. /// That method gives a chance to prepare a luminance source completely before calling /// the time consuming decoding method. On the other hand there is a chance to create /// a luminance source which is independent from external resources (like Bitmap objects) /// and the decoding call can be made in a background thread. /// </summary> /// <param name="luminanceSource">The luminance source.</param> /// <returns></returns> virtual public Result Decode(LuminanceSource luminanceSource) { var result = default(Result); var binarizer = CreateBinarizer(luminanceSource); var binaryBitmap = new BinaryBitmap(binarizer); var multiformatReader = Reader as MultiFormatReader; var rotationCount = 0; var rotationMaxCount = 1; if (AutoRotate) { Options.Hints[DecodeHintType.TRY_HARDER_WITHOUT_ROTATION] = true; rotationMaxCount = 4; } else { if (Options.Hints.ContainsKey(DecodeHintType.TRY_HARDER_WITHOUT_ROTATION)) Options.Hints.Remove(DecodeHintType.TRY_HARDER_WITHOUT_ROTATION); } for (; rotationCount < rotationMaxCount; rotationCount++) { if (usePreviousState && multiformatReader != null) { result = multiformatReader.decodeWithState(binaryBitmap); } else { result = Reader.decode(binaryBitmap, Options.Hints); usePreviousState = true; } if (result == null) { if (TryInverted && luminanceSource.InversionSupported) { binaryBitmap = new BinaryBitmap(CreateBinarizer(luminanceSource.invert())); if (usePreviousState && multiformatReader != null) { result = multiformatReader.decodeWithState(binaryBitmap); } else { result = Reader.decode(binaryBitmap, Options.Hints); usePreviousState = true; } } } if (result != null || !luminanceSource.RotateSupported || !AutoRotate) break; binaryBitmap = new BinaryBitmap(CreateBinarizer(luminanceSource.rotateCounterClockwise())); } if (result != null) { if (result.ResultMetadata == null) { result.putMetadata(ResultMetadataType.ORIENTATION, rotationCount * 90); } else if (!result.ResultMetadata.ContainsKey(ResultMetadataType.ORIENTATION)) { result.ResultMetadata[ResultMetadataType.ORIENTATION] = rotationCount * 90; } else { // perhaps the core decoder rotates the image already (can happen if TryHarder is specified) result.ResultMetadata[ResultMetadataType.ORIENTATION] = ((int)(result.ResultMetadata[ResultMetadataType.ORIENTATION]) + rotationCount * 90) % 360; } OnResultFound(result); } return result; }
2.编码(待续)